类别:

窗口函数 (通用)

CONDITIONAL_CHANGE_EVENT

如果当前行中 expr1 实参的值与前一行中 expr1 的值不同,则返回窗口分区内每行的窗口事件编号。窗口事件编号从 0 开始并以 1 递增,以指明该窗口内到目前为止的变更数。

语法

CONDITIONAL_CHANGE_EVENT( <expr1> ) OVER ( [ PARTITION BY <expr2> ] ORDER BY <expr3> )
Copy

实参

expr1

这是与上一行的表达式进行比较的表达式。

expr2

这是用于划分分区的可选表达式。

expr3

这是每个分区中作为排序规则的表达式。

使用说明

  • 表达式 CONDITIONAL_CHANGE_EVENT (expr1) OVER (window_frame) 的计算公式为:

    CONDITIONAL_TRUE_EVENT( <expr1> != LAG(<expr1>) OVER(window_frame)) OVER(window_frame)

    有关 CONDITIONAL_TRUE_EVENT 的更多信息,请参阅 CONDITIONAL_TRUE_EVENT

示例

此示例展示如何检测电源故障和重新打开的次数(即,电压降至 0 或恢复的次数)。(此示例假设每 15 分钟对电压进行一次采样就足够了。由于电源故障的持续时间可能少于 15 分钟,因此您通常需要更频繁的采样,或者希望将查询结果视为近似值。)

创建并加载表:

CREATE TABLE voltage_readings (
    site_ID INTEGER, -- which refrigerator the measurement was taken in.
    ts TIMESTAMP,  -- the time at which the temperature was measured.
    VOLTAGE FLOAT
    );
INSERT INTO voltage_readings (site_ID, ts, voltage) VALUES
    (1, '2019-10-30 13:00:00', 120),
    (1, '2019-10-30 13:15:00', 120),
    (1, '2019-10-30 13:30:00',   0),
    (1, '2019-10-30 13:45:00',   0),
    (1, '2019-10-30 14:00:00',   0),
    (1, '2019-10-30 14:15:00',   0),
    (1, '2019-10-30 14:30:00', 120)
    ;
Copy

此示例显示电压为零的样本,无论这些零电压事件属于相同的电源故障,还是属于不同的电源故障。

SELECT site_ID, ts, voltage
    FROM voltage_readings
    WHERE voltage = 0
    ORDER BY ts;
+---------+-------------------------+---------+
| SITE_ID | TS                      | VOLTAGE |
|---------+-------------------------+---------|
|       1 | 2019-10-30 13:30:00.000 |       0 |
|       1 | 2019-10-30 13:45:00.000 |       0 |
|       1 | 2019-10-30 14:00:00.000 |       0 |
|       1 | 2019-10-30 14:15:00.000 |       0 |
+---------+-------------------------+---------+
Copy

此示例显示样本,以及指示电压是否更改的列:

SELECT
      site_ID,
      ts,
      voltage,
      CONDITIONAL_CHANGE_EVENT(voltage = 0) OVER (ORDER BY ts) AS power_changes
    FROM voltage_readings;
+---------+-------------------------+---------+---------------+
| SITE_ID | TS                      | VOLTAGE | POWER_CHANGES |
|---------+-------------------------+---------+---------------|
|       1 | 2019-10-30 13:00:00.000 |     120 |             0 |
|       1 | 2019-10-30 13:15:00.000 |     120 |             0 |
|       1 | 2019-10-30 13:30:00.000 |       0 |             1 |
|       1 | 2019-10-30 13:45:00.000 |       0 |             1 |
|       1 | 2019-10-30 14:00:00.000 |       0 |             1 |
|       1 | 2019-10-30 14:15:00.000 |       0 |             1 |
|       1 | 2019-10-30 14:30:00.000 |     120 |             2 |
+---------+-------------------------+---------+---------------+
Copy

此示例显示电源停止和重新启动的时间:

WITH power_change_events AS
    (
    SELECT
      site_ID,
      ts,
      voltage,
      CONDITIONAL_CHANGE_EVENT(voltage = 0) OVER (ORDER BY ts) AS power_changes
    FROM voltage_readings
    )
SELECT
      site_ID,
      MIN(ts),
      voltage,
      power_changes
    FROM power_change_events
    GROUP BY site_ID, power_changes, voltage
    ORDER BY 2
    ;
+---------+-------------------------+---------+---------------+
| SITE_ID | MIN(TS)                 | VOLTAGE | POWER_CHANGES |
|---------+-------------------------+---------+---------------|
|       1 | 2019-10-30 13:00:00.000 |     120 |             0 |
|       1 | 2019-10-30 13:30:00.000 |       0 |             1 |
|       1 | 2019-10-30 14:30:00.000 |     120 |             2 |
+---------+-------------------------+---------+---------------+
Copy

此示例显示电源停止和重新启动的次数:

WITH power_change_events AS
    (
    SELECT
          site_ID,
          CONDITIONAL_CHANGE_EVENT(voltage = 0) OVER (ORDER BY ts) AS power_changes
        FROM voltage_readings
    )
SELECT MAX(power_changes) 
    FROM power_change_events
    GROUP BY site_ID
    ;
+--------------------+
| MAX(POWER_CHANGES) |
|--------------------|
|                  2 |
+--------------------+
Copy

此示例说明:

  • 每次指定值更改时,分区中的变更号也会更改。

  • NULL 值不被视为新值或更改值。

  • 每个分区的变更计数从 0 开始。

    创建并加载表:

    CREATE TABLE table1 (province VARCHAR, o_col INTEGER, o2_col INTEGER);
    INSERT INTO table1 (province, o_col, o2_col) VALUES
        ('Alberta',    0, 10),
        ('Alberta',    0, 10),
        ('Alberta',   13, 10),
        ('Alberta',   13, 11),
        ('Alberta',   14, 11),
        ('Alberta',   15, 12),
        ('Alberta', NULL, NULL),
        ('Manitoba',    30, 30);
    
    Copy

    查询表:

    SELECT province, o_col,
          CONDITIONAL_CHANGE_EVENT(o_col) 
            OVER (PARTITION BY province ORDER BY o_col) 
              AS change_event
        FROM table1
        ORDER BY province, o_col
        ;
    +----------+-------+--------------+
    | PROVINCE | O_COL | CHANGE_EVENT |
    |----------+-------+--------------|
    | Alberta  |     0 |            0 |
    | Alberta  |     0 |            0 |
    | Alberta  |    13 |            1 |
    | Alberta  |    13 |            1 |
    | Alberta  |    14 |            2 |
    | Alberta  |    15 |            3 |
    | Alberta  |  NULL |            3 |
    | Manitoba |    30 |            0 |
    +----------+-------+--------------+
    
    Copy

下一个示例显示以下情况:

  • expr1 可以是列以外的表达式。此查询使用表达式 o_col < 15,并且查询的输出显示 o_col 中的值何时从小于 15 的值更改为大于或等于 15 的值。

  • expr3 不需要匹配 expr1。 换句话说,OVER 子句的 ORDER BY 分子句中表达式不需要与 CONDITIONAL_CHANGE_EVENT 函数中的表达式匹配。

    查询表:

    SELECT province, o_col,
          'o_col < 15' AS condition,
          CONDITIONAL_CHANGE_EVENT(o_col) 
            OVER (PARTITION BY province ORDER BY o_col) 
              AS change_event,
          CONDITIONAL_CHANGE_EVENT(o_col < 15) 
            OVER (PARTITION BY province ORDER BY o_col) 
              AS change_event_2
        FROM table1
        ORDER BY province, o_col
        ;
    +----------+-------+------------+--------------+----------------+
    | PROVINCE | O_COL | CONDITION  | CHANGE_EVENT | CHANGE_EVENT_2 |
    |----------+-------+------------+--------------+----------------|
    | Alberta  |     0 | o_col < 15 |            0 |              0 |
    | Alberta  |     0 | o_col < 15 |            0 |              0 |
    | Alberta  |    13 | o_col < 15 |            1 |              0 |
    | Alberta  |    13 | o_col < 15 |            1 |              0 |
    | Alberta  |    14 | o_col < 15 |            2 |              0 |
    | Alberta  |    15 | o_col < 15 |            3 |              1 |
    | Alberta  |  NULL | o_col < 15 |            3 |              1 |
    | Manitoba |    30 | o_col < 15 |            0 |              0 |
    +----------+-------+------------+--------------+----------------+
    
    Copy

下一个示例比较 CONDITIONAL_CHANGE_EVENT 和 CONDITIONAL_TRUE_EVENT:

SELECT province, o_col,
      CONDITIONAL_CHANGE_EVENT(o_col) 
        OVER (PARTITION BY province ORDER BY o_col) 
          AS change_event,
      CONDITIONAL_TRUE_EVENT(o_col) 
        OVER (PARTITION BY province ORDER BY o_col) 
          AS true_event
    FROM table1
    ORDER BY province, o_col
    ;
+----------+-------+--------------+------------+
| PROVINCE | O_COL | CHANGE_EVENT | TRUE_EVENT |
|----------+-------+--------------+------------|
| Alberta  |     0 |            0 |          0 |
| Alberta  |     0 |            0 |          0 |
| Alberta  |    13 |            1 |          1 |
| Alberta  |    13 |            1 |          2 |
| Alberta  |    14 |            2 |          3 |
| Alberta  |    15 |            3 |          4 |
| Alberta  |  NULL |            3 |          4 |
| Manitoba |    30 |            0 |          1 |
+----------+-------+--------------+------------+
Copy

此示例还比较 CONDITIONAL_CHANGE_EVENT 和 CONDITIONAL_TRUE_EVENT:

CREATE TABLE borrowers (
    name VARCHAR,
    status_date DATE,
    late_balance NUMERIC(11, 2),
    thirty_day_late_balance NUMERIC(11, 2)
    );
INSERT INTO borrowers (name, status_date, late_balance, thirty_day_late_balance) VALUES

    -- Pays late frequently, but catches back up rather than falling further
    -- behind.
    ('Geoffrey Flake', '2018-01-01'::DATE,    0.0,    0.0),
    ('Geoffrey Flake', '2018-02-01'::DATE, 1000.0,    0.0),
    ('Geoffrey Flake', '2018-03-01'::DATE, 2000.0, 1000.0),
    ('Geoffrey Flake', '2018-04-01'::DATE,    0.0,    0.0),
    ('Geoffrey Flake', '2018-05-01'::DATE, 1000.0,    0.0),
    ('Geoffrey Flake', '2018-06-01'::DATE, 2000.0, 1000.0),
    ('Geoffrey Flake', '2018-07-01'::DATE,    0.0,    0.0),
    ('Geoffrey Flake', '2018-08-01'::DATE,    0.0,    0.0),

    -- Keeps falling further behind.
    ('Cy Dismal', '2018-01-01'::DATE,    0.0,    0.0),
    ('Cy Dismal', '2018-02-01'::DATE,    0.0,    0.0),
    ('Cy Dismal', '2018-03-01'::DATE, 1000.0,    0.0),
    ('Cy Dismal', '2018-04-01'::DATE, 2000.0, 1000.0),
    ('Cy Dismal', '2018-05-01'::DATE, 3000.0, 2000.0),
    ('Cy Dismal', '2018-06-01'::DATE, 4000.0, 3000.0),
    ('Cy Dismal', '2018-07-01'::DATE, 5000.0, 4000.0),
    ('Cy Dismal', '2018-08-01'::DATE, 6000.0, 5000.0),

    -- Fell behind and isn't catching up, but isn't falling further and 
    -- further behind. Essentially, this person just 'failed' once.
    ('Leslie Safer', '2018-01-01'::DATE,    0.0,    0.0),
    ('Leslie Safer', '2018-02-01'::DATE,    0.0,    0.0),
    ('Leslie Safer', '2018-03-01'::DATE, 1000.0, 1000.0),
    ('Leslie Safer', '2018-04-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-05-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-06-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-07-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-08-01'::DATE, 2000.0, 1000.0),

    -- Always pays on time and in full.
    ('Ida Idyll', '2018-01-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-02-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-03-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-04-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-05-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-06-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-07-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-08-01'::DATE,    0.0,    0.0)

    ;
Copy
SELECT name, status_date, late_balance AS "OVERDUE", 
        thirty_day_late_balance AS "30 DAYS OVERDUE",
        CONDITIONAL_CHANGE_EVENT(thirty_day_late_balance) 
          OVER (PARTITION BY name ORDER BY status_date) AS change_event_cnt,
        CONDITIONAL_TRUE_EVENT(thirty_day_late_balance) 
          OVER (PARTITION BY name ORDER BY status_date) AS true_cnt
    FROM borrowers
    ORDER BY name, status_date
    ;
+----------------+-------------+---------+-----------------+------------------+----------+
| NAME           | STATUS_DATE | OVERDUE | 30 DAYS OVERDUE | CHANGE_EVENT_CNT | TRUE_CNT |
|----------------+-------------+---------+-----------------+------------------+----------|
| Cy Dismal      | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Cy Dismal      | 2018-02-01  |    0.00 |            0.00 |                0 |        0 |
| Cy Dismal      | 2018-03-01  | 1000.00 |            0.00 |                0 |        0 |
| Cy Dismal      | 2018-04-01  | 2000.00 |         1000.00 |                1 |        1 |
| Cy Dismal      | 2018-05-01  | 3000.00 |         2000.00 |                2 |        2 |
| Cy Dismal      | 2018-06-01  | 4000.00 |         3000.00 |                3 |        3 |
| Cy Dismal      | 2018-07-01  | 5000.00 |         4000.00 |                4 |        4 |
| Cy Dismal      | 2018-08-01  | 6000.00 |         5000.00 |                5 |        5 |
| Geoffrey Flake | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Geoffrey Flake | 2018-02-01  | 1000.00 |            0.00 |                0 |        0 |
| Geoffrey Flake | 2018-03-01  | 2000.00 |         1000.00 |                1 |        1 |
| Geoffrey Flake | 2018-04-01  |    0.00 |            0.00 |                2 |        1 |
| Geoffrey Flake | 2018-05-01  | 1000.00 |            0.00 |                2 |        1 |
| Geoffrey Flake | 2018-06-01  | 2000.00 |         1000.00 |                3 |        2 |
| Geoffrey Flake | 2018-07-01  |    0.00 |            0.00 |                4 |        2 |
| Geoffrey Flake | 2018-08-01  |    0.00 |            0.00 |                4 |        2 |
| Ida Idyll      | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-02-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-03-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-04-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-05-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-06-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-07-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-08-01  |    0.00 |            0.00 |                0 |        0 |
| Leslie Safer   | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Leslie Safer   | 2018-02-01  |    0.00 |            0.00 |                0 |        0 |
| Leslie Safer   | 2018-03-01  | 1000.00 |         1000.00 |                1 |        1 |
| Leslie Safer   | 2018-04-01  | 2000.00 |         1000.00 |                1 |        2 |
| Leslie Safer   | 2018-05-01  | 2000.00 |         1000.00 |                1 |        3 |
| Leslie Safer   | 2018-06-01  | 2000.00 |         1000.00 |                1 |        4 |
| Leslie Safer   | 2018-07-01  | 2000.00 |         1000.00 |                1 |        5 |
| Leslie Safer   | 2018-08-01  | 2000.00 |         1000.00 |                1 |        6 |
+----------------+-------------+---------+-----------------+------------------+----------+
Copy

下面是更广泛的示例:

CREATE OR REPLACE TABLE tbl
(p int, o int, i int, r int, s varchar(100));

INSERT INTO tbl VALUES
(100,1,1,70,'seventy'),(100,2,2,30, 'thirty'),(100,3,3,40,'fourty'),(100,4,NULL,90,'ninety'),(100,5,5,50,'fifty'),(100,6,6,30,'thirty'),
(200,7,7,40,'fourty'),(200,8,NULL,NULL,'n_u_l_l'),(200,9,NULL,NULL,'n_u_l_l'),(200,10,10,20,'twenty'),(200,11,NULL,90,'ninety'),
(300,12,12,30,'thirty'),
(400,13,NULL,20,'twenty');

SELECT * FROM tbl ORDER BY p, o, i;

+-----+----+--------+--------+---------+
|  P  | O  |   I    |   R    |    S    |
+-----+----+--------+--------+---------+
| 100 | 1  | 1      | 70     | seventy |
| 100 | 2  | 2      | 30     | thirty  |
| 100 | 3  | 3      | 40     | fourty  |
| 100 | 4  | [NULL] | 90     | ninety  |
| 100 | 5  | 5      | 50     | fifty   |
| 100 | 6  | 6      | 30     | thirty  |
| 200 | 7  | 7      | 40     | fourty  |
| 200 | 8  | [NULL] | [NULL] | n_u_l_l |
| 200 | 9  | [NULL] | [NULL] | n_u_l_l |
| 200 | 10 | 10     | 20     | twenty  |
| 200 | 11 | [NULL] | 90     | ninety  |
| 300 | 12 | 12     | 30     | thirty  |
| 400 | 13 | [NULL] | 20     | twenty  |
+-----+----+--------+--------+---------+

SELECT p, o, CONDITIONAL_CHANGE_EVENT(o) OVER (PARTITION BY p ORDER BY o) FROM tbl ORDER BY p, o;

+-----+----+--------------------------------------------------------------+
|   P |  O | CONDITIONAL_CHANGE_EVENT(O) OVER (PARTITION BY P ORDER BY O) |
|-----+----+--------------------------------------------------------------|
| 100 |  1 |                                                            0 |
| 100 |  2 |                                                            1 |
| 100 |  3 |                                                            2 |
| 100 |  4 |                                                            3 |
| 100 |  5 |                                                            4 |
| 100 |  6 |                                                            5 |
| 200 |  7 |                                                            0 |
| 200 |  8 |                                                            1 |
| 200 |  9 |                                                            2 |
| 200 | 10 |                                                            3 |
| 200 | 11 |                                                            4 |
| 300 | 12 |                                                            0 |
| 400 | 13 |                                                            0 |
+-----+----+--------------------------------------------------------------+
Copy
语言: 中文