类别:

/sql-reference/functions-aggregation`(相似度估算)、:doc:/sql-reference/functions-analytic`

APPROXIMATE_SIMILARITY

根据输入的 MinHash 状态返回其相似度(Jaccard 指数)的估计值。有关 MinHash 状态的更多信息,请参阅 估计两个或多个集合的相似度

别名:

APPROXIMATE_JACCARD_INDEX

另请参阅:

MINHASHMINHASH_COMBINE

语法

APPROXIMATE_SIMILARITY( [ DISTINCT ] <expr> [ , ... ] )

APPROXIMATE_SIMILARITY(*)
Copy

实参

expr

表达式应该是 MINHASH 函数调用返回的一个或多个 MinHash 状态。换言之,表达式必须是 MinHash 状态信息,而不是您需要其近似相似度的列或表达式。(下面的示例有助于说明这一点。)

有关 MinHash 状态的更多信息,请参阅 估计两个或多个集合的相似度

返回

介于 0.0 和 1.0(含)之间的浮点数,其中 1.0 表示集相同,0.0 表示集没有重叠。

使用说明

  • DISTINCT 可以作为实参包含在内,但不起作用。

  • 输入 MinHash 状态必须具有长度相等的 MinHash 数组。

  • 输入 MinHash 状态的数组长度是近似值的质量指标。

    函数 MINHASH 中使用的 k 的值越大,近似值就越准确。但是,此值对相似度估算的计算时间具有线性影响。

示例

USE SCHEMA snowflake_sample_data.tpch_sf1;

SELECT APPROXIMATE_SIMILARITY(mh) FROM
    (
      (SELECT MINHASH(100, C5) mh FROM orders WHERE c2 <= 50000)
         UNION
      (SELECT MINHASH(100, C5) mh FROM orders WHERE C2 > 50000)
    );

+----------------------------+
| APPROXIMATE_SIMILARITY(MH) |
|----------------------------|
|                       0.97 |
+----------------------------+
Copy

此处是更广泛的示例,显示了三个相关的函数 MINHASHMINHASH_COMBINEAPPROXIMATE_SIMILARITY。此示例创建 3 个表(ta、tb 和 tc),其中两个表(ta 和 tb)相似,两个表(ta 和 tc)完全不同。

创建并使用以下值填充表:

CREATE TABLE ta (i INTEGER);
CREATE TABLE tb (i INTEGER);
CREATE TABLE tc (i INTEGER);

-- Insert values into the 3 tables.
INSERT INTO ta (i) VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (10);
-- Almost the same as the preceding values.
INSERT INTO tb (i) VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (11);
-- Different values and different number of values.
INSERT INTO tc (i) VALUES (-1), (-20), (-300), (-4000);
Copy

计算初始数据集的 minhash 信息:

CREATE TABLE minhash_a_1 (mh) AS SELECT MINHASH(100, i) FROM ta;
CREATE TABLE minhash_b (mh) AS SELECT MINHASH(100, i) FROM tb;
CREATE TABLE minhash_c (mh) AS SELECT MINHASH(100, i) FROM tc;
Copy

向其中一个表添加更多数据:

INSERT INTO ta (i) VALUES (12);
Copy

演示 MINHASH_COMBINE 函数:

-- Record minhash information about only the new rows:
CREATE TABLE minhash_a_2 (mh) AS SELECT MINHASH(100, i) FROM ta WHERE i > 10;

-- Now combine all the minhash info for the old and new rows in table ta.
CREATE TABLE minhash_a (mh) AS
  SELECT MINHASH_COMBINE(mh) FROM
    (
      (SELECT mh FROM minhash_a_1)
      UNION ALL
      (SELECT mh FROM minhash_a_2)
    );
Copy

此查询显示两个相似表(ta 和 tb)的近似相似度:

SELECT APPROXIMATE_SIMILARITY (mh) FROM
  (
    (SELECT mh FROM minhash_a)
    UNION ALL
    (SELECT mh FROM minhash_b)
  );
+-----------------------------+
| APPROXIMATE_SIMILARITY (MH) |
|-----------------------------|
|                        0.75 |
+-----------------------------+
Copy

此查询显示两个截然不同的表(ta 和 tc)的近似相似度:

SELECT APPROXIMATE_SIMILARITY (mh) FROM
  (
    (SELECT mh FROM minhash_a)
    UNION ALL
    (SELECT mh FROM minhash_c)
  );
+-----------------------------+
| APPROXIMATE_SIMILARITY (MH) |
|-----------------------------|
|                           0 |
+-----------------------------+
Copy
语言: 中文