Categories:

Window functions (General)

CONDITIONAL_TRUE_EVENT

Returns a window event number for each row within a window partition based on the result of the boolean argument expr1. The number starts from 0 and is incremented by 1 for each row on which the expr1 evaluates to true.

One use of this function is to sessionize window partitions. For example, in click stream data, it can be used to determine whether a user has started a new session by checking whether the last event was longer ago than a threshold.

Syntax

CONDITIONAL_TRUE_EVENT( <expr1> ) OVER ( [ PARTITION BY <expr2> ] ORDER BY <expr3> )
Copy

Arguments

expr1

This is a boolean expression that changes the window event number value when it evaluates true.

expr2

This is the optional expression to partition by.

expr3

This is the expression to order by within each partition.

Usage notes

  • The conditional expression expr1 can contain the rank-related functions LAG and LEAD, which allow us to build more expressive windows. If used, these functions have to use the same OVER specification as the CONDITIONAL_TRUE_EVENT.

Examples

The first example illustrates that:

  • The number within a partition increments each time the specified column is TRUE (non-zero in this case).

  • NULL values are not considered a TRUE value.

  • The number starts over at 0 for each partition.

    Create and load the table:

    CREATE TABLE table1 (province VARCHAR, o_col INTEGER, o2_col INTEGER);
    INSERT INTO table1 (province, o_col, o2_col) VALUES
        ('Alberta',    0, 10),
        ('Alberta',    0, 10),
        ('Alberta',   13, 10),
        ('Alberta',   13, 11),
        ('Alberta',   14, 11),
        ('Alberta',   15, 12),
        ('Alberta', NULL, NULL),
        ('Manitoba',    30, 30);
    
    Copy

    Query the table:

    SELECT province, o_col, 
          CONDITIONAL_TRUE_EVENT(o_col) 
            OVER (PARTITION BY province ORDER BY o_col) 
              AS true_event
        FROM table1
        ORDER BY province, o_col
        ;
    +----------+-------+------------+
    | PROVINCE | O_COL | TRUE_EVENT |
    |----------+-------+------------|
    | Alberta  |     0 |          0 |
    | Alberta  |     0 |          0 |
    | Alberta  |    13 |          1 |
    | Alberta  |    13 |          2 |
    | Alberta  |    14 |          3 |
    | Alberta  |    15 |          4 |
    | Alberta  |  NULL |          4 |
    | Manitoba |    30 |          1 |
    +----------+-------+------------+
    
    Copy

The next example shows that:

  • expr1 can be an expression other than a column. This query uses the expression o_col > 20, and the output of the query shows when the value in o_col changes from a value less than or equal to 20 to a value greater than 20.

  • expr3 does not need to match expr1. In other words, the expression in the ORDER BY sub-clause of the OVER clause does not need to match the expression in the CONDITIONAL_TRUE_EVENT function.

    Query the table:

    SELECT province, o_col, 
          CONDITIONAL_TRUE_EVENT(o_col) 
            OVER (PARTITION BY province ORDER BY o_col) 
              AS true_event,
          CONDITIONAL_TRUE_EVENT(o_col > 20) 
            OVER (PARTITION BY province ORDER BY o_col) 
              AS true_event_gt_20
        FROM table1
        ORDER BY province, o_col
        ;
    +----------+-------+------------+------------------+
    | PROVINCE | O_COL | TRUE_EVENT | TRUE_EVENT_GT_20 |
    |----------+-------+------------+------------------|
    | Alberta  |     0 |          0 |                0 |
    | Alberta  |     0 |          0 |                0 |
    | Alberta  |    13 |          1 |                0 |
    | Alberta  |    13 |          2 |                0 |
    | Alberta  |    14 |          3 |                0 |
    | Alberta  |    15 |          4 |                0 |
    | Alberta  |  NULL |          4 |                0 |
    | Manitoba |    30 |          1 |                1 |
    +----------+-------+------------+------------------+
    
    Copy

The next example compares CONDITIONAL_CHANGE_EVENT and CONDITIONAL_TRUE_EVENT:

SELECT province, o_col,
      CONDITIONAL_CHANGE_EVENT(o_col) 
        OVER (PARTITION BY province ORDER BY o_col) 
          AS change_event,
      CONDITIONAL_TRUE_EVENT(o_col) 
        OVER (PARTITION BY province ORDER BY o_col) 
          AS true_event
    FROM table1
    ORDER BY province, o_col
    ;
+----------+-------+--------------+------------+
| PROVINCE | O_COL | CHANGE_EVENT | TRUE_EVENT |
|----------+-------+--------------+------------|
| Alberta  |     0 |            0 |          0 |
| Alberta  |     0 |            0 |          0 |
| Alberta  |    13 |            1 |          1 |
| Alberta  |    13 |            1 |          2 |
| Alberta  |    14 |            2 |          3 |
| Alberta  |    15 |            3 |          4 |
| Alberta  |  NULL |            3 |          4 |
| Manitoba |    30 |            0 |          1 |
+----------+-------+--------------+------------+
Copy

This example also compares CONDITIONAL_CHANGE_EVENT and CONDITIONAL_TRUE_EVENT:

CREATE TABLE borrowers (
    name VARCHAR,
    status_date DATE,
    late_balance NUMERIC(11, 2),
    thirty_day_late_balance NUMERIC(11, 2)
    );
INSERT INTO borrowers (name, status_date, late_balance, thirty_day_late_balance) VALUES

    -- Pays late frequently, but catches back up rather than falling further
    -- behind.
    ('Geoffrey Flake', '2018-01-01'::DATE,    0.0,    0.0),
    ('Geoffrey Flake', '2018-02-01'::DATE, 1000.0,    0.0),
    ('Geoffrey Flake', '2018-03-01'::DATE, 2000.0, 1000.0),
    ('Geoffrey Flake', '2018-04-01'::DATE,    0.0,    0.0),
    ('Geoffrey Flake', '2018-05-01'::DATE, 1000.0,    0.0),
    ('Geoffrey Flake', '2018-06-01'::DATE, 2000.0, 1000.0),
    ('Geoffrey Flake', '2018-07-01'::DATE,    0.0,    0.0),
    ('Geoffrey Flake', '2018-08-01'::DATE,    0.0,    0.0),

    -- Keeps falling further behind.
    ('Cy Dismal', '2018-01-01'::DATE,    0.0,    0.0),
    ('Cy Dismal', '2018-02-01'::DATE,    0.0,    0.0),
    ('Cy Dismal', '2018-03-01'::DATE, 1000.0,    0.0),
    ('Cy Dismal', '2018-04-01'::DATE, 2000.0, 1000.0),
    ('Cy Dismal', '2018-05-01'::DATE, 3000.0, 2000.0),
    ('Cy Dismal', '2018-06-01'::DATE, 4000.0, 3000.0),
    ('Cy Dismal', '2018-07-01'::DATE, 5000.0, 4000.0),
    ('Cy Dismal', '2018-08-01'::DATE, 6000.0, 5000.0),

    -- Fell behind and isn't catching up, but isn't falling further and 
    -- further behind. Essentially, this person just 'failed' once.
    ('Leslie Safer', '2018-01-01'::DATE,    0.0,    0.0),
    ('Leslie Safer', '2018-02-01'::DATE,    0.0,    0.0),
    ('Leslie Safer', '2018-03-01'::DATE, 1000.0, 1000.0),
    ('Leslie Safer', '2018-04-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-05-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-06-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-07-01'::DATE, 2000.0, 1000.0),
    ('Leslie Safer', '2018-08-01'::DATE, 2000.0, 1000.0),

    -- Always pays on time and in full.
    ('Ida Idyll', '2018-01-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-02-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-03-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-04-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-05-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-06-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-07-01'::DATE,    0.0,    0.0),
    ('Ida Idyll', '2018-08-01'::DATE,    0.0,    0.0)

    ;
Copy
SELECT name, status_date, late_balance AS "OVERDUE", 
        thirty_day_late_balance AS "30 DAYS OVERDUE",
        CONDITIONAL_CHANGE_EVENT(thirty_day_late_balance) 
          OVER (PARTITION BY name ORDER BY status_date) AS change_event_cnt,
        CONDITIONAL_TRUE_EVENT(thirty_day_late_balance) 
          OVER (PARTITION BY name ORDER BY status_date) AS true_cnt
    FROM borrowers
    ORDER BY name, status_date
    ;
+----------------+-------------+---------+-----------------+------------------+----------+
| NAME           | STATUS_DATE | OVERDUE | 30 DAYS OVERDUE | CHANGE_EVENT_CNT | TRUE_CNT |
|----------------+-------------+---------+-----------------+------------------+----------|
| Cy Dismal      | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Cy Dismal      | 2018-02-01  |    0.00 |            0.00 |                0 |        0 |
| Cy Dismal      | 2018-03-01  | 1000.00 |            0.00 |                0 |        0 |
| Cy Dismal      | 2018-04-01  | 2000.00 |         1000.00 |                1 |        1 |
| Cy Dismal      | 2018-05-01  | 3000.00 |         2000.00 |                2 |        2 |
| Cy Dismal      | 2018-06-01  | 4000.00 |         3000.00 |                3 |        3 |
| Cy Dismal      | 2018-07-01  | 5000.00 |         4000.00 |                4 |        4 |
| Cy Dismal      | 2018-08-01  | 6000.00 |         5000.00 |                5 |        5 |
| Geoffrey Flake | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Geoffrey Flake | 2018-02-01  | 1000.00 |            0.00 |                0 |        0 |
| Geoffrey Flake | 2018-03-01  | 2000.00 |         1000.00 |                1 |        1 |
| Geoffrey Flake | 2018-04-01  |    0.00 |            0.00 |                2 |        1 |
| Geoffrey Flake | 2018-05-01  | 1000.00 |            0.00 |                2 |        1 |
| Geoffrey Flake | 2018-06-01  | 2000.00 |         1000.00 |                3 |        2 |
| Geoffrey Flake | 2018-07-01  |    0.00 |            0.00 |                4 |        2 |
| Geoffrey Flake | 2018-08-01  |    0.00 |            0.00 |                4 |        2 |
| Ida Idyll      | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-02-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-03-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-04-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-05-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-06-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-07-01  |    0.00 |            0.00 |                0 |        0 |
| Ida Idyll      | 2018-08-01  |    0.00 |            0.00 |                0 |        0 |
| Leslie Safer   | 2018-01-01  |    0.00 |            0.00 |                0 |        0 |
| Leslie Safer   | 2018-02-01  |    0.00 |            0.00 |                0 |        0 |
| Leslie Safer   | 2018-03-01  | 1000.00 |         1000.00 |                1 |        1 |
| Leslie Safer   | 2018-04-01  | 2000.00 |         1000.00 |                1 |        2 |
| Leslie Safer   | 2018-05-01  | 2000.00 |         1000.00 |                1 |        3 |
| Leslie Safer   | 2018-06-01  | 2000.00 |         1000.00 |                1 |        4 |
| Leslie Safer   | 2018-07-01  | 2000.00 |         1000.00 |                1 |        5 |
| Leslie Safer   | 2018-08-01  | 2000.00 |         1000.00 |                1 |        6 |
+----------------+-------------+---------+-----------------+------------------+----------+
Copy

Here is a more extensive example:

CREATE OR REPLACE TABLE tbl
(p int, o int, i int, r int, s varchar(100));

INSERT INTO tbl VALUES
(100,1,1,70,'seventy'),(100,2,2,30, 'thirty'),(100,3,3,40,'fourty'),(100,4,NULL,90,'ninety'),(100,5,5,50,'fifty'),(100,6,6,30,'thirty'),
(200,7,7,40,'fourty'),(200,8,NULL,NULL,'n_u_l_l'),(200,9,NULL,NULL,'n_u_l_l'),(200,10,10,20,'twenty'),(200,11,NULL,90,'ninety'),
(300,12,12,30,'thirty'),
(400,13,NULL,20,'twenty');

SELECT * FROM tbl ORDER BY p, o, i;

+-----+----+--------+--------+---------+
|  P  | O  |   I    |   R    |    S    |
+-----+----+--------+--------+---------+
| 100 | 1  | 1      | 70     | seventy |
| 100 | 2  | 2      | 30     | thirty  |
| 100 | 3  | 3      | 40     | fourty  |
| 100 | 4  | [NULL] | 90     | ninety  |
| 100 | 5  | 5      | 50     | fifty   |
| 100 | 6  | 6      | 30     | thirty  |
| 200 | 7  | 7      | 40     | fourty  |
| 200 | 8  | [NULL] | [NULL] | n_u_l_l |
| 200 | 9  | [NULL] | [NULL] | n_u_l_l |
| 200 | 10 | 10     | 20     | twenty  |
| 200 | 11 | [NULL] | 90     | ninety  |
| 300 | 12 | 12     | 30     | thirty  |
| 400 | 13 | [NULL] | 20     | twenty  |
+-----+----+--------+--------+---------+

SELECT p, o, CONDITIONAL_TRUE_EVENT(o>2) OVER (PARTITION BY p ORDER BY o) FROM tbl ORDER BY p, o;

+-----+----+--------------------------------------------------------------+
|   P |  O | CONDITIONAL_TRUE_EVENT(O>2) OVER (PARTITION BY P ORDER BY O) |
|-----+----+--------------------------------------------------------------|
| 100 |  1 |                                                            0 |
| 100 |  2 |                                                            0 |
| 100 |  3 |                                                            1 |
| 100 |  4 |                                                            2 |
| 100 |  5 |                                                            3 |
| 100 |  6 |                                                            4 |
| 200 |  7 |                                                            1 |
| 200 |  8 |                                                            2 |
| 200 |  9 |                                                            3 |
| 200 | 10 |                                                            4 |
| 200 | 11 |                                                            5 |
| 300 | 12 |                                                            1 |
| 400 | 13 |                                                            1 |
+-----+----+--------------------------------------------------------------+

SELECT p, o, CONDITIONAL_TRUE_EVENT(LAG(O) OVER (PARTITION BY P ORDER BY O) >1) OVER (PARTITION BY P ORDER BY O) FROM tbl ORDER BY p, o;

+-----+----+-----------------------------------------------------------------------------------------------------+
|   P |  O | CONDITIONAL_TRUE_EVENT(LAG(O) OVER (PARTITION BY P ORDER BY O) >1) OVER (PARTITION BY P ORDER BY O) |
|-----+----+-----------------------------------------------------------------------------------------------------|
| 100 |  1 |                                                                                                   0 |
| 100 |  2 |                                                                                                   0 |
| 100 |  3 |                                                                                                   1 |
| 100 |  4 |                                                                                                   2 |
| 100 |  5 |                                                                                                   3 |
| 100 |  6 |                                                                                                   4 |
| 200 |  7 |                                                                                                   0 |
| 200 |  8 |                                                                                                   1 |
| 200 |  9 |                                                                                                   2 |
| 200 | 10 |                                                                                                   3 |
| 200 | 11 |                                                                                                   4 |
| 300 | 12 |                                                                                                   0 |
| 400 | 13 |                                                                                                   0 |
+-----+----+-----------------------------------------------------------------------------------------------------+
Copy
Language: English