- Categories:
Numeric functions (Rounding and Truncation)
ROUND¶
Returns rounded values for input_expr
.
- See also:
Syntax¶
ROUND( <input_expr> [ , <scale_expr> [ , <rounding_mode> ] ] )
ROUND( EXPR => <input_expr> ,
SCALE => <scale_expr>
[ , ROUNDING_MODE => <rounding_mode> ] )
Arguments¶
Required:
input_expr
. OR .EXPR => input_expr
The value or expression to operate on. The data type should be one of the numeric data types, such as FLOAT or NUMBER.
If you specify the
EXPR =>
named argument, you must also specify theSCALE =>
named argument.
Optional:
scale_expr
. OR .SCALE => scale_expr
The number of digits the output should include after the decimal point. The expression should evaluate to an integer from -38 to +38.
The default
scale_expr
is zero, meaning that the function removes all digits after the decimal point.For information about negative numbers, see the Usage Notes below.
If you specify the
SCALE =>
named argument, you must specifyEXPR =>
as the preceding named argument.rounding_mode
. OR .ROUNDING_MODE => rounding_mode
The rounding mode to use. You can specify one of the following values:
'HALF_AWAY_FROM_ZERO'
. This mode rounds the value half away from zero (link removed).'HALF_TO_EVEN'
. This mode rounds the value half to even (link removed).
Default:
'HALF_AWAY_FROM_ZERO'
If you specify the
ROUNDING_MODE =>
named argument, you must specify bothEXPR =>
andSCALE =>
as preceding named arguments.Note
If you specify either value for the
rounding_mode
argument, the data type ofinput_expr
must be one of the data types for a fixed-point number.Data types for floating point numbers (e.g. FLOAT) are not supported with this argument.
Returns¶
The return type is based on the input type:
If the input expression is a FLOAT, the returned type is a FLOAT.
If the input expression is a NUMBER, the returned type is a NUMBER.
If the input scale is constant:
If the input scale is positive, the returned type has a scale equal to the input scale and has a precision large enough to encompass any possible result.
If the input scale is negative, the returned type has a scale of 0.
If the input scale is not constant, the returned type’s scale is the same as the input expression’s.
If the scale is zero, then the value is effectively an INTEGER.
For example:
The data type returned by ROUND(3.14::FLOAT, 1) is FLOAT.
The NUMBER returned by ROUND(3.14, 1) has scale 1 and precision at least 3.
The NUMBER returned by ROUND(-9.99, 0) has scale 0 and precision at least 2.
The NUMBER returned by ROUND(33.33, -1) has scale 0 and precision at least 3.
Usage notes¶
You must either specify all arguments by name or by position. You cannot specify some of the arguments by name and other arguments by position.
When specifying an argument by name, you cannot use double quotes around the argument name.
If
scale_expr
is negative, it specifies the number of places before the decimal point to which to adjust the number. For example, if the scale is -2, the result is a multiple of 100.If
scale_expr
is larger than the input expression scale, the function does not have any effect.If either the
input_expr
or thescale_expr
is NULL, the result is NULL.By default, half-points are rounded away from zero for decimals. For example, -0.5 is rounded to -1.0.
To change the rounding mode to round the value half to even (link removed) (e.g. to round -0.5 to 0), pass in
'HALF_TO_EVEN'
for therounding_mode
argument.Note
If you specify the
rounding_mode
argument, the data type of theinput_expr
argument must be one of the data types for a fixed-point number.Floating point numbers are approximate values. A floating point number might not round as expected.
If rounding brings the number outside of the range of values of the data type, the function returns an error.
Examples¶
This first example shows a simple use of ROUND
, with the default number of decimal places (0):
SELECT ROUND(135.135), ROUND(-975.975);
+----------------+-----------------+
| ROUND(135.135) | ROUND(-975.975) |
|----------------+-----------------|
| 135 | -976 |
+----------------+-----------------+
The next example uses a range of values for the scale parameter:
SELECT n, scale, ROUND(n, scale)
FROM test_ceiling
ORDER BY n, scale;
+----------+-------+-----------------+
| N | SCALE | ROUND(N, SCALE) |
|----------+-------+-----------------|
| -975.975 | -1 | -980 |
| -975.975 | 0 | -976 |
| -975.975 | 2 | -975.98 |
| 135.135 | -2 | 100 |
| 135.135 | 0 | 135 |
| 135.135 | 1 | 135.1 |
| 135.135 | 3 | 135.135 |
| 135.135 | 50 | 135.135 |
| 135.135 | NULL | NULL |
+----------+-------+-----------------+
The next two examples show the difference between using the default rounding mode ('HALF_AWAY_FROM_ZERO'
) and the rounding
mode 'HALF_TO_EVEN'
. Both examples call the ROUND function twice, first with the default rounding behavior, then with 'HALF_TO_EVEN'
.
The first example uses a positive input value of 2.5:
SELECT ROUND(2.5, 0), ROUND(2.5, 0, 'HALF_TO_EVEN');
+---------------+-------------------------------+
| ROUND(2.5, 0) | ROUND(2.5, 0, 'HALF_TO_EVEN') |
|---------------+-------------------------------|
| 3 | 2 |
+---------------+-------------------------------+
The second example uses a negative input value of -2.5:
SELECT ROUND(-2.5, 0), ROUND(2.5, 0, 'HALF_TO_EVEN');
+---------------+--------------------------------+
| ROUND(2.5, 0) | ROUND(-2.5, 0, 'HALF_TO_EVEN') |
|---------------+--------------------------------|
| -3 | -2 |
+---------------+--------------------------------+
The next two examples demonstrate how to specify the arguments to the function by name, rather than by position.
SELECT ROUND(
EXPR => -2.5,
SCALE => 0);
+---------------------------------+
| ROUND(EXPR => -2.5, SCALE => 0) |
|---------------------------------|
| -3 |
+---------------------------------+
SELECT ROUND(
EXPR => -2.5,
SCALE => 0,
ROUNDING_MODE => 'HALF_TO_EVEN');
+------------------------------------------------------------------+
| ROUND(EXPR => -2.5, SCALE => 0, ROUNDING_MODE => 'HALF_TO_EVEN') |
|------------------------------------------------------------------|
| -2 |
+------------------------------------------------------------------+
The next example shows that FLOAT values are not always stored exactly. As you can see below, in some cases .005 is rounded to .01, while in other cases it is rounded to 0. The difference is not in the rounding; the difference is actually in the underlying representation of the floating point number; 1.005 is stored as a number very slightly smaller than 1.005 (approximately 1.004999). The DECIMAL value, however is stored as an exact number, and is rounded to .01 as expected in all cases.
Create and load a table:
CREATE OR REPLACE TEMP TABLE rnd1(f float, d DECIMAL(10, 3)); INSERT INTO rnd1 (f, d) VALUES ( -10.005, -10.005), ( -1.005, -1.005), ( 1.005, 1.005), ( 10.005, 10.005) ;
Show examples of the difference between rounded FLOAT values and rounded DECIMAL values:
select f, round(f, 2), d, round(d, 2) from rnd1 order by 1; +---------+-------------+---------+-------------+ | F | ROUND(F, 2) | D | ROUND(D, 2) | |---------+-------------+---------+-------------| | -10.005 | -10.01 | -10.005 | -10.01 | | -1.005 | -1 | -1.005 | -1.01 | | 1.005 | 1 | 1.005 | 1.01 | | 10.005 | 10.01 | 10.005 | 10.01 | +---------+-------------+---------+-------------+