- Categories:
MODEL_MONITOR_PERFORMANCE_METRIC¶
Gets performance metrics from a model monitor. Each model monitor monitors one machine learning model.
- See also:
Querying monitoring results for more information.
Syntax¶
MODEL_MONITOR_PERFORMANCE_METRIC(<model_monitor_name>, <performance_metric_name>,
[, <granularity> [, <start_time> [, <end_time> ] ] ] )
Arguments¶
Required:
MODEL_MONITOR_NAME
Name of the model monitor used to compute the metric.
Valid values:
A string that’s the name of the model monitor. It can be a simple or fully qualified name.
METRIC_NAME
Name of the performance metric.
Valid values if the model monitor is attached to a regression model:
'RMSE'
'MAE'
'MAPE'
'MSE'
Valid values if the model monitor is attached to a binary classification model:
'ROC_AUC'
'CLASSIFICATION_ACCURACY'
'PRECISION'
'RECALL'
'F1_SCORE'
Optional:
GRANULARITY
Granularity of the time range being queried. The default value is
1 DAY
.Valid values:
'<num> DAY'
'<num> WEEK'
'<num> MONTH'
'<num> QUARTER'
'<num> YEAR'
'ALL'
NULL
START_TIME
Start of the time range used to compute the metric. The default value is 60 days before the current time, and is calculated each time you call the function.
Valid values:
A timestamp expression or
NULL
.END_TIME
End of the time range used to compute the metric. The default value is the current time, and is calculated each time you call the function.
Valid values:
A timestamp expression or
NULL
.
Returns¶
Column |
Description |
Example values |
---|---|---|
|
Timestamp at the start of the time range. |
|
|
Value of the metric within the specified time range. |
|
|
Number of records used to compute the metric. |
|
|
Number of records excluded from the metric computation. |
|
|
Name of the metric that has been computed. |
|
Usage Notes¶
Requirements¶
The model monitor must be associated with a model that supports the requested metric type.
The model monitor must contain the necessary data for each metric type.
Ensure the model monitor meets the metric requirements.
Regression
RMSE: Requires prediction_score and actual_score columns
MAE: Requires prediction_score and actual_score columns
MAPE: Requires prediction_score and actual_score columns
Binary Classification
ROC_AUC: Requires prediction_score and actual_class columns
CLASSIFICATION_ACCURACY: Requires prediction_class and actual_class columns
PRECISION: Requires prediction_class and actual_class columns
RECALL: Requires prediction_class and actual_class columns
F1_SCORE: Requires prediction_class and actual_class columns
Error cases¶
You might run into errors if you do the following:
Request an accuracy metric without setting the corresponding prediction or actual column.
There is no data for the
actual_score
oractual_class
columns.
Examples¶
The following example gets the Root Mean Square Error (RMSE) over a one-day period from the model monitor.
SELECT * FROM TABLE(MODEL_MONITOR_PERFORMANCE_METRIC(
'MY_MONITOR', 'RMSE', '1 DAY', TO_TIMESTAMP_TZ(‘2024-01-01’)
, TO_TIMESTAMP_TZ(‘2024-01-02’))
)
The following example gets the Root Mean Square Error (RMSE) over the last 30 days from the model monitor:
SELECT * FROM TABLE(MODEL_MONITOR_PERFORMANCE_METRIC(
'MY_MONITOR', 'RMSE', '1 DAY', DATEADD('DAY', -30, CURRENT_DATE()), CURRENT_DATE())
)