SnowConvert AI - Teradata - Data Migration Considerations

This section describe important consideration when migration data from Teradata to Snowflake.

Note

Consider that this is a work in progress.

When migrating data from Teradata to Snowflake, it is crucial to consider the functional differences between the databases. This page showcases the best suggestions for migrating data.

Review the following information:

UNION ALL Data Migration

Data migration considerations for UNION ALL.

UNION ALL is a SQL operator that allows the combination of multiple resultsets. The syntax is the following:

 query_expression_1 UNION [ ALL ] query_expression_2
Copy

For more information, please review the following Teradata (https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/SQL-Data-Manipulation-Language/Set-Operators/UNION-Operator/UNION-Operator-Syntax) documentation.

Column Size differences

Even though the operator is translated into the same operator in Snowflake, there could be detailed differences in functional equivalence. For example, the union of different columns which have different column sizes. Teradata does truncate the values when the first SELECT statement contains less space in the columns.

Teradata behavior

Note

Same behavior in ANSI and TERA session modes.

For this example, the following input will show the Teradata behavior.

Teradata setup data
 CREATE TABLE table1
(
col1 VARCHAR(20)
);

INSERT INTO table1 VALUES('value 1 abcdefghijk');
INSERT INTO table1 VALUES('value 2 abcdefghijk');

CREATE TABLE table2
(
col1 VARCHAR(10)
);

INSERT INTO table2 VALUES('t2 row 1 a');
INSERT INTO table2 VALUES('t2 row 2 a');
INSERT INTO table2 VALUES('t2 row 3 a');
Copy
Snowflake setup data
 CREATE OR REPLACE TABLE table1
(
col1 VARCHAR(20)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "teradata",  "convertedOn": "10/14/2024" }}'
;

INSERT INTO table1
VALUES ('value 1 abcdefghijk');

INSERT INTO table1
VALUES ('value 2 abcdefghijk');

CREATE OR REPLACE TABLE table2
(
col1 VARCHAR(10)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "teradata",  "convertedOn": "10/14/2024" }}'
;

INSERT INTO table2
VALUES ('t2 row 1 a');

INSERT INTO table2
VALUES ('t2 row 2 a');

INSERT INTO table2
VALUES ('t2 row 3 a');
Copy

Case 1 - one single column: UNION ALL for a column varchar (20) over a column varchar (10)

SuccessPlaceholder

For this case, the functional equivalence is the same

Teradata input
 SELECT col1 FROM table1
UNION ALL
SELECT col1 FROM table2;
Copy
Teradata output
value 1 abcdefghijk
t2 row 3 a
value 2 abcdefghijk
t2 row 1 a
t2 row 2 a

Copy
Snowflake input
 SELECT
col1 FROM
table1
UNION ALL
SELECT
col1 FROM
table2;
Copy
Snowflake output
value 1 abcdefghijk
t2 row 3 a
value 2 abcdefghijk
t2 row 1 a
t2 row 2 a

Copy

Case 2 - one single column: UNION ALL for a column varchar (10) over a column varchar (20)

Danger

In this case, the function equivalence is not the same.

The following case does not show functional equivalence in Snowflake. The column values should be truncated as in the Teradata sample.

Teradata input
 SELECT col1 FROM table2
UNION ALL
SELECT col1 FROM table1;
Copy
Teradata output
t2 row 3 a
value 1 ab --> truncated
t2 row 1 a
t2 row 2 a
value 2 ab --> truncated

Copy
Snowflake input
 SELECT
col1 FROM
table2
UNION ALL
SELECT
col1 FROM
table1;
Copy
Snowflake output
t2 row 3 a
value 1 abcdefghijk --> NOT truncated
t2 row 1 a
t2 row 2 a
value 2 abcdefghijk --> NOT truncated

Copy

Workaround to get the same functionality

In this case, the size of the column of the table2 is 10 and the table1 is 20. So, the size of the first column in the query should be the element to complete the LEFT() function used here. Review more information about the Snowflake LEFT function HERE.

Snowflake input
 SELECT col1 FROM table2 -- size (10)
UNION ALL
SELECT LEFT(col1, 10) AS col1 FROM table1;
Copy
Snowflake output
t2 row 1 a
t2 row 2 a
t2 row 3 a
value 1 ab
value 2 ab

Copy

Case 3 - multiple columns - same size by table: UNION ALL for columns varchar (20) over columns varchar (10)

For this case, it is required to set up new data as follows:

Teradata setup data
 CREATE TABLE table3
(
col1 VARCHAR(20),
col2 VARCHAR(20)
);

INSERT INTO table3 VALUES('value 1 abcdefghijk', 'value 1 abcdefghijk');
INSERT INTO table3 VALUES('value 2 abcdefghijk', 'value 2 abcdefghijk');

CREATE TABLE table4
(
col1 VARCHAR(10),
col2 VARCHAR(10)
);

INSERT INTO table4 VALUES('t2 row 1 a', 't2 row 1 b');
INSERT INTO table4 VALUES('t2 row 2 a', 't2 row 2 b');
INSERT INTO table4 VALUES('t2 row 3 a', 't2 row 3 b');
Copy
Snowflake setup data
 CREATE OR REPLACE TABLE table3
(
col1 VARCHAR(20),
col2 VARCHAR(20)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "teradata",  "convertedOn": "10/14/2024" }}'
;

INSERT INTO table3
VALUES ('value 1 abcdefghijk', 'value 1 abcdefghijk');

INSERT INTO table3
VALUES ('value 2 abcdefghijk', 'value 2 abcdefghijk');

CREATE OR REPLACE TABLE table4
(
col1 VARCHAR(10),
col2 VARCHAR(10)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "teradata",  "convertedOn": "10/14/2024" }}'
;

INSERT INTO table4
VALUES ('t2 row 1 a', 't2 row 1 b');

INSERT INTO table4
VALUES ('t2 row 2 a', 't2 row 2 b');

INSERT INTO table4
VALUES ('t2 row 3 a', 't2 row 3 b');
Copy

Once the new tables and data are created, the following query can be evaluated.

Note

For this case, the functional equivalence is the same

Teradata input
 select col1, col2 from table3
union all
select col1, col2 from table4;
Copy
Teradata output

col1

col2

value 1 abcdefghijk

value 1 abcdefghijk

t2 row 3 a

t2 row 3 b

value 2 abcdefghijk

value 2 abcdefghijk

t2 row 1 a

t2 row 1 b

t2 row 2 a

t2 row 2 b

Snowflake input
 SELECT
col1, col2 FROM
table3
UNION ALL
SELECT
col1, col2 FROM
table4;
Copy
Snowflake output

col1

col2

value 1 abcdefghijk

value 1 abcdefghijk

value 2 abcdefghijk

value 2 abcdefghijk

t2 row 1 a

t2 row 1 b

t2 row 2 a

t2 row 2 b

t2 row 3 a

t2 row 3 b

Case 4 - multiple columns - same size by table: UNION ALL for columns varchar (10) over columns varchar (20)

Warning

In this case, the function equivalence is not the same.

Teradata input
 select col1, col2 from table4
union all
select col1, col2 from table3;
Copy
Teradata output

col1

col2

t2 row 3 a

t2 row 3 b

value 1 ab

value 1 ab

t2 row 1 a

t2 row 1 b

t2 row 2 a

t2 row 2 b

value 2 ab

value 2 ab

Snowflake input
 SELECT
col1, col2 FROM
table4
UNION ALL
SELECT
col1, col2 FROM
table3;
Copy
Snowflake output

col1

col2

t2 row 1 a

t2 row 1 b

t2 row 2 a

t2 row 2 b

t2 row 3 a

t2 row 3 b

value 1 abcdefghijk

value 1 abcdefghijk

value 2 abcdefghijk

value 2 abcdefghijk

Workaround to get the same functionality

Apply the column size to the second SELECT on the columns to get the same functionality.

Snowflake input
 SELECT col1, col2 FROM table4 -- size (10)
UNION ALL
SELECT LEFT(col1, 10) AS col1, LEFT(col2, 10) AS col2 FROM table3;
Copy
Snowflake output

col1

col2

t2 row 1 a

t2 row 1 b

t2 row 2 a

t2 row 2 b

t2 row 3 a

t2 row 3 b

value 1 ab

value 1 ab

value 2 ab

value 2 ab

Case 5 - multiple columns - different sizes by table: UNION ALL for columns varchar (10) over columns varchar (20)

For this case, it is required to set up new data as follows:

Teradata setup data
 CREATE TABLE table5
(
col1 VARCHAR(20),
col2 VARCHAR(12)
);

INSERT INTO table5 VALUES('value 1 abcdefghijk', 'value 1 abcdefghijk');
INSERT INTO table5 VALUES('value 2 abcdefghijk', 'value 2 abcdefghijk');

CREATE TABLE table6
(
col1 VARCHAR(10),
col2 VARCHAR(5)
);

INSERT INTO table6 VALUES('t2 row 1 a', 't2 row 1 b');
INSERT INTO table6 VALUES('t2 row 2 a', 't2 row 2 b');
INSERT INTO table6 VALUES('t2 row 3 a', 't2 row 3 b');
Copy
Snowflake setup data
 CREATE OR REPLACE TABLE table5
(
col1 VARCHAR(20),
col2 VARCHAR(12)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "teradata",  "convertedOn": "10/14/2024" }}'
;

INSERT INTO table5
VALUES ('value 1 abcdefghijk', 'value 1 abcd');

INSERT INTO table5
VALUES ('value 2 abcdefghijk', 'value 2 abcd');

CREATE OR REPLACE TABLE table6
(
col1 VARCHAR(10),
col2 VARCHAR(5)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "teradata",  "convertedOn": "10/14/2024" }}'
;

INSERT INTO table6
VALUES ('t2 row 1 a', 't2 1b');

INSERT INTO table6
VALUES ('t2 row 2 a', 't2 2b');

INSERT INTO table6
VALUES ('t2 row 3 a', 't2 3b');
Copy

Once the new tables and data are created, the following query can be evaluated.

Note

For this case, the functional equivalence is the same

Teradata input
 select col1, col2 from table5
union all
select col1, col2 from table6;
Copy
Teradata output

col1

col2

value 1 abcdefghijk

value 1 abcd

t2 row 3 a

t2 3b

value 2 abcdefghijk

value 2 abcd

t2 row 1 a

t2 1b

t2 row 2 a

t2 2b

Snowflake input
 SELECT
col1, col2 FROM
table5
UNION ALL
SELECT
col1, col2 FROM
table6;
Copy
Snowflake output

col1

col2

value 1 abcdefghijk

value 1 abcd

value 2 abcdefghijk

value 2 abcd

t2 row 1 a

t2 1b

t2 row 2 a

t2 2b

t2 row 3 a

t2 3b

Case 6 - multiple columns - different sizes by table: UNION ALL for columns varchar (20), varchar(10) over columns varchar (10), varchar(5)

Warning

In this case, the function equivalence is not the same.

Teradata input
 select col1, col2 from table6
union all
select col1, col2 from table5;
Copy
Teradata output

col1

col2

t2 row 3 a

t2 3b

value 1 ab

value

t2 row 1 a

t2 1b

t2 row 2 a

t2 2b

value 2 ab

value

Snowflake input
 SELECT
col1, col2 FROM
table6
UNION ALL
SELECT
col1, col2 FROM
table5;
Copy
Snowflake output

col1

col2

t2 row 1 a

t2 1b

t2 row 2 a

t2 2b

t2 row 3 a

t2 3b

value 1 abcdefghijk

value 1 abcd

value 2 abcdefghijk

value 2 abcd

Workaround to get the same functionality

The column with the smallest size from the first SELECT is used to determine the size of the columns from the second SELECT.

Snowflake input
 SELECT
col1, col2 FROM
table6
UNION ALL
SELECT
LEFT(col1, 5) as col1, LEFT(col2, 5) AS col2 FROM
table5;
Copy
Snowflake output

col1

col2

t2 row 3 a

t2 3b

value 1 ab

value

t2 row 1 a

t2 1b

t2 row 2 a

t2 2b

value 2 ab

value

Case 7 - multiple columns expression - different sizes by table: UNION ALL for columns varchar (20), varchar(20) over columns varchar (10), varchar(10)

Use the data set up here. Once the new tables and data are created, the following query can be evaluated.

Note

For this case, the functional equivalence is the same

Teradata input
 select col1 || col2 from table3
union all
select col1 || col2 from table4;
Copy
Teradata output

col1 || col2

value 1 abcdefghijkvalue 1 abcdefghijk

t2 row 3 at2 row 3 b

value 2 abcdefghijkvalue 2 abcdefghijk

t2 row 1 at2 row 1 b

t2 row 2 at2 row 2 b

Snowflake input
 SELECT
col1 || col2 FROM
table3
UNION ALL
SELECT
col1 || col2 FROM
table4;
Copy
Snowflake output

col1 || col2

value 1 abcdefghijkvalue 1 abcdefghijk

value 2 abcdefghijkvalue 2 abcdefghijk

t2 row 1 at2 row 1 b

t2 row 2 at2 row 2 b

t2 row 3 at2 row 3 b

Case 8 - multiple columns expression - different sizes by table: UNION ALL for columns varchar (20), varchar(20) over columns varchar (10), varchar(10)

Warning

This case has functional differences.

Teradata input
 select col1 || col2 from table4
union all
select col1 || col2 from table3;
Copy
Teradata output

col1 || col2

t2 row 1 at2 row 1 b

t2 row 2 at2 row 2 b

t2 row 3 at2 row 3 b

value 1 abcdefghijkv

value 2 abcdefghijkv

Snowflake input
 SELECT
col1 || col2 FROM
table4
UNION ALL
SELECT
col1 || col2 FROM
table3;
Copy
Snowflake output

col1 || col2

t2 row 1 at2 row 1 b

t2 row 2 at2 row 2 b

t2 row 3 at2 row 3 b

value 1 abcdefghijkvalue 1 abcdefghijk

value 2 abcdefghijkvalue 2 abcdefghijk

Workaround to get the same functionality

The sum of the column sizes of the less big column should be used in the LEFT function. For example, the less big column is varchar(10), so the limit of the LEFT function should be 20 (10 + 10).

Warning

The sum of the first SELECT if this is less big, it would be used for the truncation of the values.

Snowflake input
 SELECT
col1 || col2 FROM
table4
UNION ALL
SELECT
LEFT(col1 || col2, 20) FROM
table3;
Copy
Snowflake output

col1 || col2

t2 row 1 at2 row 1 b

t2 row 2 at2 row 2 b

t2 row 3 at2 row 3 b

value 1 abcdefghijkv

value 2 abcdefghijkv

Other considerations about column size differences

  • CHAR and VARCHAR behave the same.

  • Number columns may behave differently. The numbers cannot be truncated, so there is an overflow in the Teradata environment. So, this is not applied to these data types. Review the following example:

-- Teradata number sample 
CREATE TABLE table11
(
col1 NUMBER(2)
);

INSERT INTO table11 VALUES(10);
INSERT INTO table11 VALUES(10);

CREATE TABLE table12
(
col1 NUMBER(1)
);

INSERT INTO table12 VALUES(1);
INSERT INTO table12 VALUES(1);
INSERT INTO table12 VALUES(1);

-- ERROR!  Overflow occurred when computing an expression involving table11.col1
SELECT col1 FROM table12
UNION ALL
SELECT col1 FROM table11;
Copy
Language: English