modin.pandas.Index.reindex¶
- Index.reindex(target: Iterable, method: str | None = None, level: int | None = None, limit: int | None = None, tolerance: int | float | None = None) tuple[Index, np.ndarray][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/index.py#L1653-L1764)¶
- Create index with target’s values. - Parameters:
- target (an iterable) – 
- method ({None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional) – - default: exact matches only. 
- pad / ffill: find the PREVIOUS index value if no exact match. 
- backfill / bfill: use NEXT index value if no exact match 
- nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. 
 
- level (int, optional) – Level of multiindex. 
- limit (int, optional) – Maximum number of consecutive labels in - targetto match for inexact matches.
- tolerance (int or float, optional) – - Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation - abs(index[indexer] - target) <= tolerance.- Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. 
 
- Returns:
- new_index (pd.Index) – Resulting index. 
- indexer (np.ndarray[np.intp] or None) – Indices of output values in original index. 
 
- Raises:
- TypeError – If - methodpassed along with- level.
- ValueError – If non-unique multi-index 
- ValueError – If non-unique index and - methodor- limitpassed.
 
 - Notes - method=nearestis not supported.- If duplicate values are present, they are ignored, and all duplicate values are present in the result. - If the source and target indices have no overlap, monotonicity checks are skipped. - Tuple-like index values are not supported. - Examples - >>> idx = pd.Index(['car', 'bike', 'train', 'tractor']) >>> idx Index(['car', 'bike', 'train', 'tractor'], dtype='object') - >>> idx.reindex(['car', 'bike']) (Index(['car', 'bike'], dtype='object'), array([0, 1])) - See also - Series.reindex
- Conform Series to new index with optional filling logic. 
- DataFrame.reindex
- Conform DataFrame to new index with optional filling logic.