MLFlow¶
您可以使用支持 PyFunc 的 MLflow 模型。如果您的 MLFlow 模型具有签名,则会从模型中推断出 signature 实参。否则,必须提供 signature 或 sample_input_data。
调用 options 时,可以在 log_model 字典中使用下列附加选项:
| 选项 | 描述 | 
|---|---|
| 
 | MLFlow 模型工件的 URI。如果在模型的元数据中不可用,则必须以  | 
| 
 | 如果为  | 
| 
 | 如果为  | 
示例¶
import mlflow
from sklearn import datasets, model_selection, ensemble
db = datasets.load_diabetes(as_frame=True)
X_train, X_test, y_train, y_test = model_selection.train_test_split(db.data, db.target)
with mlflow.start_run() as run:
    rf = ensemble.RandomForestRegressor(n_estimators=100, max_depth=6, max_features=3)
    rf.fit(X_train, y_train)
    # Use the model to make predictions on the test dataset.
    predictions = rf.predict(X_test)
    signature = mlflow.models.signature.infer_signature(X_test, predictions)
    mlflow.sklearn.log_model(
        rf,
        "model",
        signature=signature,
    )
    run_id = run.info.run_id
model_ref = registry.log_model(
    mlflow.pyfunc.load_model(f"runs:/{run_id}/model"),
    model_name="mlflowModel",
    version_name="v1",
    conda_dependencies=["mlflow<=2.4.0", "scikit-learn", "scipy"],
    options={"ignore_mlflow_dependencies": True}
)
model_ref.run(X_test)