modin.pandas.DatetimeIndex.ceil¶
- DatetimeIndex.ceil(freq: Frequency, ambiguous: str = 'raise', nonexistent: str = 'raise') DatetimeIndex[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/datetime_index.py#L341-L348)¶
- Perform ceil operation on the data to the specified freq. - Parameters:
- freq (str or Offset) – The frequency level to {op} the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values. 
- ambiguous ('infer', bool-ndarray, 'NaT', default 'raise') – - This parameter is only supported for ‘raise’. Only relevant for DatetimeIndex: - ’infer’ will attempt to infer fall dst-transition hours based on order 
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) 
- ’NaT’ will return NaT where there are ambiguous times 
- ’raise’ will raise an AmbiguousTimeError if there are ambiguous times. 
 
- nonexistent ('shift_forward', 'shift_backward', 'NaT', timedelta, default 'raise') – - This parameter is only supported for ‘raise’. A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - ’shift_forward’ will shift the nonexistent time forward to the closest existing time 
- ’shift_backward’ will shift the nonexistent time backward to the closest existing time 
- ’NaT’ will return NaT where there are nonexistent times 
- timedelta objects will shift nonexistent times by the timedelta 
- ’raise’ will raise an NonExistentTimeError if there are nonexistent times. 
 
 
- Return type:
- DatetimeIndex with ceil values. 
- Raises:
- ValueError if the freq cannot be converted. – 
 - Examples - DatetimeIndex - >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq=None) - >>> rng.ceil('h') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None)