modin.pandas.Series¶
- class modin.pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False, query_compiler=None)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/.tox/docs/lib/python3.9/site-packages/modin/pandas/series.py#L66-L2713)¶
- Bases: - BasePandasDataset- Snowpark pandas representation of pandas.Series with a lazily-evaluated relational dataset. - A Series is considered lazy because it encapsulates the computation or query required to produce the final dataset. The computation is not performed until the datasets need to be displayed, or i/o methods like to_pandas, to_snowflake are called. - Internally, the underlying data are stored as Snowflake table with rows and columns. - Parameters:
- data (modin.pandas.Series, array-like, Iterable, dict, or scalar value, optional) – Contains data stored in Series. If data is a dict, argument order is maintained. 
- index (array-like or Index (1d), optional) – Values must be hashable and have the same length as data. 
- dtype (str, np.dtype, or pandas.ExtensionDtype, optional) – Data type for the output Series. If not specified, this will be inferred from data. 
- name (str, optional) – The name to give to the Series. 
- copy (bool, default: False) – Copy input data. 
- fastpath (bool, default: False) – pandas internal parameter. 
- query_compiler (BaseQueryCompiler, optional) – A query compiler object to create the Series from. 
 
 - Examples - Constructing Series from a dictionary with an Index specified - >>> d = {'a': 1, 'b': 2, 'c': 3} >>> ser = pd.Series(data=d, index=['a', 'b', 'c']) >>> ser a 1 b 2 c 3 dtype: int64 - The keys of the dictionary match with the Index values, hence the Index values have no effect. - >>> d = {'a': 1, 'b': 2, 'c': 3} >>> ser = pd.Series(data=d, index=['x', 'y', 'z']) >>> ser x NaN y NaN z NaN dtype: float64 - Methods - abs()- Return a BasePandasDataset with absolute numeric value of each element. - add(other[, level, fill_value, axis])- Return Addition of series and other, element-wise (binary operator add). - add_prefix(prefix[, axis])- Prefix labels with string prefix. - add_suffix(suffix[, axis])- Suffix labels with string suffix. - agg([func, axis])- Aggregate using one or more operations over the specified axis. - aggregate([func, axis])- Aggregate using one or more operations over the specified axis. - align(other[, join, axis, level, copy, ...])- Align two objects on their axes with the specified join method. - all([axis, bool_only, skipna])- Return whether all elements are True, potentially over an axis. - any(*[, axis, bool_only, skipna])- Return whether any element are True, potentially over an axis. - apply(func[, convert_dtype, args])- Invoke function on values of Series. - argmax([axis, skipna])- Return int position of the largest value in the Series. - argmin([axis, skipna])- Return int position of the smallest value in the Series. - argsort([axis, kind, order])- Return the integer indices that would sort the Series values. - array()- Return the ExtensionArray of the data backing this Series or Index. - asfreq(freq[, method, how, normalize, ...])- Convert time series to specified frequency. - asof(where[, subset])- Return the last row(s) without any NaNs before where. - astype(dtype[, copy, errors])- Cast a pandas object to a specified dtype - dtype.- at_time(time[, asof, axis])- Select values at particular time of day (e.g., 9:30AM). - autocorr([lag])- Compute the lag-N autocorrelation. - backfill(*[, axis, inplace, limit, downcast])- Synonym for DataFrame.fillna with - method='bfill'.- between(left, right[, inclusive])- Return boolean Series equivalent to left <= series <= right. - between_time(start_time, end_time[, ...])- Select values between particular times of the day (e.g., 9:00-9:30 AM). - bfill(*[, axis, inplace, limit, limit_area, ...])- Synonym for DataFrame.fillna with - method='bfill'.- bool()- Return the bool of a single element BasePandasDataset. - cache_result([inplace])- Persists the current Snowpark pandas Series to a temporary table to improve the latency of subsequent operations. - case_when(caselist)- Replace values where the conditions are True. - clip([lower, upper, axis, inplace])- Trim values at input threshold(s). - combine(other, func[, fill_value])- Perform combination of BasePandasDataset-s according to func. - combine_first(other)- Update null elements with value in the same location in other. - compare(other[, align_axis, keep_shape, ...])- Compare to another Series and show the differences. - convert_dtypes([infer_objects, ...])- Convert columns to best possible dtypes using dtypes supporting - pd.NA.- copy([deep])- Make a copy of this object's indices and data. - corr(other[, method, min_periods])- Compute correlation with other Series, excluding missing values. - count()- Return number of non-NA/null observations in the Series. - cov(other[, min_periods, ddof])- Compute covariance with Series, excluding missing values. - cummax([axis, skipna])- Return cumulative maximum over a BasePandasDataset axis. - cummin([axis, skipna])- Return cumulative minimum over a BasePandasDataset axis. - cumprod([axis, skipna])- Return cumulative product over a BasePandasDataset axis. - cumsum([axis, skipna])- Return cumulative sum over a BasePandasDataset axis. - describe([percentiles, include, exclude])- Generate descriptive statistics. - diff([periods])- First discrete difference of element. - div(other[, level, fill_value, axis])- Return Floating division of series and other, element-wise (binary operator truediv). - divide(other[, level, fill_value, axis])- Return Floating division of series and other, element-wise (binary operator truediv). - divmod(other[, level, fill_value, axis])- Return Integer division and modulo of series and other, element-wise (binary operator divmod). - dot(other)- Compute the dot product between the Series and the columns of other. - drop([labels, axis, index, columns, level, ...])- Return Series with specified index labels removed. - drop_duplicates(*[, keep, inplace, ignore_index])- Return Series with duplicate values removed. - droplevel(level[, axis])- Return BasePandasDataset with requested index / column level(s) removed. - dropna(*[, axis, inplace, how])- Return a new Series with missing values removed. - duplicated([keep])- Indicate duplicate Series values. - eq(other[, level, fill_value, axis])- Return Equal to of series and other, element-wise (binary operator eq). - equals(other)- Test whether two series contain the same elements. - ewm([com, span, halflife, alpha, ...])- Provide exponentially weighted (EW) calculations. - expanding([min_periods, axis, method])- Provide expanding window calculations. - explode([ignore_index])- Transform each element of a list-like to a row. - factorize([sort, na_sentinel, use_na_sentinel])- Encode the object as an enumerated type or categorical variable. - ffill(*[, axis, inplace, limit, limit_area, ...])- Synonym for - DataFrame.fillna()with- method='ffill'.- fillna([value, method, axis, inplace, ...])- Fill NA/NaN values using the specified method. - filter([items, like, regex, axis])- Subset the BasePandasDataset rows or columns according to the specified index labels. - first(offset)- Select initial periods of time series data based on a date offset. - Return index for first non-NA value or None, if no non-NA value is found. - floordiv(other[, level, fill_value, axis])- Return Integer division of series and other, element-wise (binary operator floordiv). - ge(other[, level, fill_value, axis])- Return Greater than or equal to of series and other, element-wise (binary operator ge). - get(key[, default])- Get item from object for given key (ex: DataFrame column). - groupby([by, axis, level, as_index, sort, ...])- Group Series using a mapper or by a Series of columns. - gt(other[, level, fill_value, axis])- Return Greater than of series and other, element-wise (binary operator gt). - head([n])- Return the first n rows. - hist([by, ax, grid, xlabelsize, xrot, ...])- Draw histogram of the input series using matplotlib. - idxmax([axis, skipna])- Return the row label of the maximum value. - idxmin([axis, skipna])- Return the row label of the minimum value. - infer_objects([copy])- Attempt to infer better dtypes for object columns. - info([verbose, buf, max_cols, memory_usage, ...])- interpolate([method, axis, limit, inplace, ...])- Fill NaN values using an interpolation method. - isin(values)- Whether elements in BasePandasDataset are contained in values. - isna()- Detect missing values. - isnull()- Series.isnull is an alias for Series.isna. - item()- Return the first element of the underlying data as a Python scalar. - items()- Lazily iterate over (index, value) tuples. - keys()- Return alias for index. - kurt([axis, skipna, numeric_only])- Return unbiased kurtosis over requested axis. - kurtosis([axis, skipna, numeric_only])- Return unbiased kurtosis over requested axis. - last(offset)- Select final periods of time series data based on a date offset. - Return index for last non-NA value or None, if no non-NA value is found. - le(other[, level, fill_value, axis])- Return Less than or equal to of series and other, element-wise (binary operator le). - lt(other[, level, fill_value, axis])- Return Less than of series and other, element-wise (binary operator lt). - map(arg[, na_action])- Map values of Series according to an input mapping or function. - mask(cond[, other, inplace, axis, level])- Replace values where the condition is True. - max([axis, skipna, numeric_only])- Return the maximum of the values over the requested axis. - mean([axis, skipna, numeric_only])- Return the mean of the values over the requested axis. - median([axis, skipna, numeric_only])- Return the median of the values over the requested axis. - memory_usage([index, deep])- Return the memory usage of the Series. - min([axis, skipna, numeric_only])- Return the minimum of the values over the requested axis. - mod(other[, level, fill_value, axis])- Return Modulo of series and other, element-wise (binary operator mod). - mode([dropna])- Return the mode(s) of the Series. - mul(other[, level, fill_value, axis])- Get multiplication of BasePandasDataset and other, element-wise (binary operator mul). - multiply(other[, level, fill_value, axis])- Get multiplication of BasePandasDataset and other, element-wise (binary operator mul). - nbytes()- Return the number of bytes in the underlying data. - ne(other[, level, fill_value, axis])- Return Not equal to of series and other, element-wise (binary operator ne). - nlargest([n, keep])- Return the largest n elements. - notna()- Detect non-missing values for an array-like object. - notnull()- Detect non-missing values for an array-like object. - nsmallest([n, keep])- Return the smallest n elements. - nunique([dropna])- Return number of unique elements in the series. - pad(*[, axis, inplace, limit, downcast])- Synonym for - DataFrame.fillna()with- method='ffill'.- pct_change([periods, fill_method, limit, freq])- Fractional change between the current and a prior element. - pipe(func, *args, **kwargs)- Apply chainable functions that expect BasePandasDataset. - pop(item)- Return item and drop from frame. - pow(other[, level, fill_value, axis])- Return Exponential power of series and other, element-wise (binary operator pow). - prod([axis, skipna, level, numeric_only, ...])- product([axis, skipna, numeric_only, min_count])- quantile([q, interpolation])- Return value at the given quantile. - radd(other[, level, fill_value, axis])- Return Addition of series and other, element-wise (binary operator radd). - rank([axis, method, numeric_only, ...])- Compute numerical data ranks (1 through n) along axis. - ravel([order])- Return the flattened underlying data as an ndarray. - rdiv(other[, level, fill_value, axis])- Return Floating division of series and other, element-wise (binary operator rtruediv). - rdivmod(other[, level, fill_value, axis])- Return integer division and modulo of series and other, element-wise (binary operator rdivmod). - reindex([index, axis, method, copy, level, ...])- Conform Series to new index with optional filling logic. - reindex_like(other[, method, copy, limit, ...])- Return an object with matching indices as other object. - rename([index, axis, copy, inplace, level, ...])- Alter Series index labels or name. - rename_axis([mapper, index, axis, copy, inplace])- Set the name of the axis for the index or columns. - reorder_levels(order)- Rearrange index levels using input order. - repeat(repeats[, axis])- Repeat elements of a Series. - replace([to_replace, value, inplace, limit, ...])- Replace values given in to_replace with value. - resample(rule[, axis, closed, label, ...])- Resample time-series data. - reset_index([level, drop, name, inplace, ...])- Generate a new DataFrame or Series with the index reset. - rfloordiv(other[, level, fill_value, axis])- Return Integer division of series and other, element-wise (binary operator rfloordiv). - rmod(other[, level, fill_value, axis])- Return Modulo of series and other, element-wise (binary operator rmod). - rmul(other[, level, fill_value, axis])- Return Multiplication of series and other, element-wise (binary operator rmul). - rolling(window[, min_periods, center, ...])- Provide rolling window calculations. - round([decimals])- Round a BasePandasDataset to a variable number of decimal places. - rpow(other[, level, fill_value, axis])- Return Exponential power of series and other, element-wise (binary operator rpow). - rsub(other[, level, fill_value, axis])- Return Subtraction of series and other, element-wise (binary operator rsub). - rtruediv(other[, level, fill_value, axis])- Return Floating division of series and other, element-wise (binary operator rtruediv). - sample([n, frac, replace, weights, ...])- Return a random sample of items from an axis of object. - searchsorted(value[, side, sorter])- Find indices where elements should be inserted to maintain order. - sem([axis, skipna, ddof, numeric_only])- Return unbiased standard error of the mean over requested axis. - set_axis(labels, *[, axis, copy])- Assign desired index to given axis. - set_flags(*[, copy, allows_duplicate_labels])- Return a new BasePandasDataset with updated flags. - shift([periods, freq, axis, fill_value, suffix])- Shift data by desired number of periods and replace columns with fill_value (default: None). - skew([axis, skipna, numeric_only])- Return unbiased skew, normalized over n-1 - sort_index(*[, axis, level, ascending, ...])- Sort object by labels (along an axis). - sort_values([axis, ascending, inplace, ...])- Sort by the values. - squeeze([axis])- Squeeze 1 dimensional axis objects into scalars. - std([axis, skipna, ddof, numeric_only])- Return sample standard deviation over requested axis. - sub(other[, level, fill_value, axis])- Return Subtraction of series and other, element-wise (binary operator sub). - subtract(other[, level, fill_value, axis])- Return Subtraction of series and other, element-wise (binary operator sub). - sum([axis, skipna, numeric_only, min_count])- Return the sum of the values over the requested axis. - swapaxes(axis1, axis2[, copy])- Interchange axes and swap values axes appropriately. - swaplevel([i, j, copy])- Swap levels i and j in a MultiIndex. - tail([n])- Return the last n rows. - take(indices[, axis])- Return the elements in the given positional indices along an axis. - to_clipboard([excel, sep])- Copy object to the system clipboard. - to_csv([path_or_buf, sep, na_rep, ...])- Write object to a comma-separated values (csv) file. - to_dict([into])- Convert Series to {label -> value} dict or dict-like object. - to_excel(excel_writer[, sheet_name, na_rep, ...])- Write object to an Excel sheet. - to_frame([name])- Convert Series to {label -> value} dict or dict-like object. - to_hdf(path_or_buf, key[, format])- Write the contained data to an HDF5 file using HDFStore. - to_json([path_or_buf, orient, date_format, ...])- Convert the object to a JSON string. - to_latex([buf, columns, col_space, header, ...])- Render object to a LaTeX tabular, longtable, or nested table. - to_list()- Return a list of the values. - to_markdown([buf, mode, index, storage_options])- Print BasePandasDataset in Markdown-friendly format. - to_numpy([dtype, copy, na_value])- A NumPy ndarray representing the values in this Series or Index. - to_pandas(*[, statement_params])- Convert Snowpark pandas Series to pandas.Series (https://pandas.pydata.org/docs/reference/api/pandas.Series.html) - to_period([freq, copy])- Cast to PeriodArray/Index at a particular frequency. - to_pickle(path[, compression, protocol, ...])- Pickle (serialize) object to file. - to_snowflake(name[, if_exists, index, ...])- Save the Snowpark pandas Series as a Snowflake table. - to_snowpark([index, index_label])- Convert the Snowpark pandas Series to a Snowpark DataFrame. - to_sql(name, con[, schema, if_exists, ...])- Write records stored in a BasePandasDataset to a SQL database. - to_string([buf, na_rep, float_format, ...])- Render a string representation of the Series. - to_timestamp([freq, how, copy])- Cast to DatetimeIndex of Timestamps, at beginning of period. - to_xarray()- Return an xarray object from the BasePandasDataset. - tolist()- Return a list of the values. - transform(func[, axis])- Call - funcon self producing a BasePandasDataset with the same axis shape as self.- transpose(*args, **kwargs)- Return the transpose, which is by definition self. - truediv(other[, level, fill_value, axis])- Return Floating division of series and other, element-wise (binary operator truediv). - truncate([before, after, axis, copy])- Truncate a Series before and after some index value. - tz_convert(tz[, axis, level, copy])- Convert tz-aware axis to target time zone. - tz_localize(tz[, axis, level, copy, ...])- Localize tz-naive index of a BasePandasDataset to target time zone. - unique()- Return unique values of Series object. - unstack([level, fill_value, sort])- Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. - update(other)- Modify Series in place using values from passed Series. - value_counts([normalize, sort, ascending, ...])- Return a Series containing counts of unique values. - var([axis, skipna, ddof, numeric_only])- Return unbiased variance over requested axis. - view([dtype])- Create a new view of the Series. - where(cond[, other, inplace, axis, level])- Replace values where the condition is False. - xs(key[, axis, level, drop_level])- Return cross-section from the Series/DataFrame. - Attributes - Return the transpose, which is by definition self. - at- Get a single value for a row/column label pair. - attrs- Return dictionary of global attributes of this dataset. - Return a list of the row axis labels. - cat- Accessor object for categorical properties of the Series values. - Return the dtype object of the underlying data. - Return the dtype object of the underlying data. - Indicator whether the Series is empty. - flags- Return True if there are any NaNs. - iat- Get a single value for a row/column pair by integer position. - Purely integer-location based indexing for selection by position. - Get the index for this Series/DataFrame. - Return boolean if values in the object are monotonically decreasing. - Return boolean if values in the object are monotonically increasing. - Return True if values in the Series are unique. - list- Access a group of rows and columns by label(s) or a boolean array. - Return the name of the Series. - Number of dimensions of the underlying data, by definition 1. - plot- Make plot of Series. - Return a tuple of the shape of the underlying data. - Return an int representing the number of elements in this object. - sparse- struct- Return a NumPy representation of the dataset.