modin.pandas.Series.shift¶
- Series.shift(periods: int | Sequence[int] = 1, freq=None, axis: Axis = 0, fill_value: Hashable = _NoDefault.no_default, suffix: str | None = None)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/series_overrides.py#L1784-L1801)¶
- Shift data by desired number of periods and replace columns with fill_value (default: None). - Snowpark pandas does not support freq currently. - The axis parameter is unused, and defaults to 0. - Parameters:
- periods (int) – Number of periods to shift. Can be positive or negative. 
- freq (not supported, default None) – 
- axis ({0 or 'index', 1 or 'columns', None}, default None) – Shift direction. This parameter is unused and expects 0, ‘index’ or None. 
- fill_value (object, optional) – The scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data, - np.nanis used. For datetime, timedelta, or period data, etc.- NaTis used. For extension dtypes,- self.dtype.na_valueis used.
 
- Returns:
- Copy of input object, shifted. 
- Return type:
 - Examples - >>> s = pd.Series([10, 20, 15, 30, 45], ... index=pd.date_range("2020-01-01", "2020-01-05")) >>> s 2020-01-01 10 2020-01-02 20 2020-01-03 15 2020-01-04 30 2020-01-05 45 Freq: None, dtype: int64 - >>> s.shift(periods=3) 2020-01-01 NaN 2020-01-02 NaN 2020-01-03 NaN 2020-01-04 10.0 2020-01-05 20.0 Freq: None, dtype: float64 - >>> s.shift(periods=-2) 2020-01-01 15.0 2020-01-02 30.0 2020-01-03 45.0 2020-01-04 NaN 2020-01-05 NaN Freq: None, dtype: float64 - >>> s.shift(periods=3, fill_value=0) 2020-01-01 0 2020-01-02 0 2020-01-03 0 2020-01-04 10 2020-01-05 20 Freq: None, dtype: int64