modin.pandas.Series.all¶
- Series.all(axis=0, bool_only=False, skipna=True, **kwargs) Self[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/.tox/docs/lib/python3.9/site-packages/modin/pandas/base.py#L861-L904)¶
- Return whether all elements are True, potentially over an axis. - Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty). - Parameters:
- axis ({0 or 'index', 1 or 'columns', None}, default 0) – - Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0. - 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels. 
- 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index. 
- None : reduce all axes, return a scalar. 
 
- bool_only (bool, default False) – Include only boolean columns. Not implemented for Series. 
- skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. 
- **kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy. 
 
- Return type:
 - Notes - Snowpark pandas currently only supports this function on DataFrames/Series with integer or boolean columns. 
 - See also - Series.all
- Return True if all elements are True. 
- DataFrame.any
- Return True if one (or more) elements are True. 
 - Examples - Series - >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False - DataFrames - Create a dataframe from a dictionary. - >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False - Default behaviour checks if values in each column all return True. - >>> df.all() col1 True col2 False dtype: bool - Specify - axis='columns'to check if values in each row all return True.- >>> df.all(axis='columns') 0 True 1 False dtype: bool - Or - axis=Nonefor whether every value is True.- >>> df.all(axis=None) False