modin.pandas.date_range¶
- modin.pandas.date_range(start: VALID_DATE_TYPE | None = None, end: VALID_DATE_TYPE | None = None, periods: int | None = None, freq: str | pd.DateOffset | None = None, tz: str | tzinfo | None = None, normalize: bool = False, name: Hashable | None = None, inclusive: IntervalClosedType = 'both', **kwargs) pd.DatetimeIndex[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/general_overrides.py#L2746-L2982)¶
- Return a fixed frequency DatetimeIndex. - Returns the range of equally spaced time points (where the difference between any two adjacent points is specified by the given frequency) such that they all satisfy start <[=] x <[=] end, where the first one and the last one are, resp., the first and last time points in that range that fall on the boundary of - freq(if given as a frequency string) or that are valid for- freq(if given as a- pandas.tseries.offsets.DateOffset). (If exactly one of- start,- end, or- freqis not specified, this missing parameter can be computed given- periods, the number of timesteps in the range. See the note below.)- Parameters:
- start (str or datetime-like, optional) – Left bound for generating dates. 
- end (str or datetime-like, optional) – Right bound for generating dates. 
- periods (int, optional) – Number of periods to generate. 
- freq (str or DateOffset, default 'D') – Frequency strings can have multiples, e.g. ‘5H’. 
- tz (str or tzinfo, optional) – Time zone name for returning localized DatetimeIndex, for example ‘Asia/Hong_Kong’. By default, the resulting DatetimeIndex is timezone-naive. 
- normalize (bool, default False) – Normalize start/end dates to midnight before generating date range. 
- name (str, default None) – Name of the resulting DatetimeIndex. 
- inclusive ({"both", "neither", "left", "right"}, default "both") – - Include boundaries; Whether to set each bound as closed or open. - New in version 1.4.0. 
- **kwargs – For compatibility. Has no effect on the result. 
 
- Returns:
- rng 
- Return type:
 - See also - DatetimeIndex
- An immutable container for datetimes. 
- timedelta_range
- Return a fixed frequency TimedeltaIndex. 
- period_range
- Return a fixed frequency PeriodIndex. 
- interval_range
- Return a fixed frequency IntervalIndex. 
 - Notes - Of the four parameters - start,- end,- periods, and- freq, exactly three must be specified. If- freqis omitted, the resulting- DatetimeIndexwill have- periodslinearly spaced elements between- startand- end(closed on both sides).- To learn more about the frequency strings, please see this link (https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases). - Also, custom or business frequencies are not implemented in Snowpark pandas, e.g., “B”, “C”, “SMS”, “BMS”, “CBMS”, “BQS”, “BYS”, “bh”, “cbh”. - Examples - Specifying the values - The next four examples generate the same DatetimeIndex, but vary the combination of start, end and periods. - Specify start and end, with the default daily frequency. - >>> pd.date_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq=None) - Specify timezone-aware start and end, with the default daily frequency. Note that Snowflake use TIMESTAMP_TZ to represent datetime with timezone, and internally it stores UTC time together with an associated time zone offset (and the actual timezone is no longer available). More details can be found in https://docs.snowflake.cn/en/sql-reference/data-types-datetime#timestamp-ltz-timestamp-ntz-timestamp-tz. - >>> pd.date_range( ... start=pd.to_datetime("1/1/2018").tz_localize("Europe/Berlin"), ... end=pd.to_datetime("1/08/2018").tz_localize("Europe/Berlin"), ... ) DatetimeIndex(['2018-01-01 00:00:00+01:00', '2018-01-02 00:00:00+01:00', '2018-01-03 00:00:00+01:00', '2018-01-04 00:00:00+01:00', '2018-01-05 00:00:00+01:00', '2018-01-06 00:00:00+01:00', '2018-01-07 00:00:00+01:00', '2018-01-08 00:00:00+01:00'], dtype='datetime64[ns, UTC+01:00]', freq=None) - Specify start and periods, the number of periods (days). - >>> pd.date_range(start='1/1/2018', periods=8) DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq=None) - Specify end and periods, the number of periods (days). - >>> pd.date_range(end='1/1/2018', periods=8) DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq=None) - Specify start, end, and periods; the frequency is generated automatically (linearly spaced). - >>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3) DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None) - Other Parameters - Changed the freq (frequency) to - 'ME'(month end frequency).- >>> pd.date_range(start='1/1/2018', periods=5, freq='ME') DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq=None) - Multiples are allowed - >>> pd.date_range(start='1/1/2018', periods=5, freq='3ME') DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq=None) - freq can also be specified as an Offset object. - >>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3)) DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq=None) - Specify tz to set the timezone. - >>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo') DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00', '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00', '2018-01-05 00:00:00+09:00'], dtype='datetime64[ns, UTC+09:00]', freq=None) - inclusive controls whether to include start and end that are on the boundary. The default, “both”, includes boundary points on either end. - >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both") DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq=None) - Use - inclusive='left'to exclude end if it falls on the boundary.- >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left') DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq=None) - Use - inclusive='right'to exclude start if it falls on the boundary, and similarly- inclusive='neither'will exclude both start and end.- >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq=None)