modin.pandas.DataFrame.set_index¶
- DataFrame.set_index(keys: IndexLabel | list[IndexLabel | pd.Index | pd.Series | list | np.ndarray | Iterable], drop: bool = True, append: bool = False, inplace: bool = False, verify_integrity: bool = False) None | DataFrame[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L1953-L2013)¶
- Set the DataFrame index using existing columns. - Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. - Parameters:
- keys (label or array-like or list of labels/arrays) – This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, “array” encompasses - Series,- Index,- np.ndarray, and instances of- Iterator.
- drop (bool, default True) – Delete columns to be used as the new index. 
- append (bool, default False) – Whether to append columns to existing index. 
- inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one. 
- verify_integrity (bool, default False) – Check the new index for duplicates. Otherwise, defer the check until necessary. Setting to False will improve the performance of this method. 
 
- Returns:
- Changed row labels or None if - inplace=True.
- Return type:
- DataFrame or None 
 - Note - When performing - DataFrame.set_indexwhere the length of the- DataFrameobject does not match with the new index’s length, a- ValueErroris not raised. When the- DataFrameobject is longer than the new index, the- DataFrame’s new index is filled with- NaNvalues for the “extra” elements. When the- DataFrameobject is shorter than the new index, the extra values in the new index are ignored—the- DataFramestays the same length- n, and uses only the first- nvalues of the new index.- See also - DataFrame.reset_index
- Opposite of set_index. 
- DataFrame.reindex
- Change to new indices or expand indices. 
- DataFrame.reindex_like
- Change to same indices as other DataFrame. 
 - Examples - >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 - Set the index to become the ‘month’ column: - >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 - Create a MultiIndex using columns ‘year’ and ‘month’: - >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 - Create a MultiIndex using an Index and a column: - >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 - Create a MultiIndex using two Series: - >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1.0 1 2012 55 2 4.0 4 2014 40 3 9.0 7 2013 84 4 16.0 10 2014 31