modin.pandas.DataFrame.duplicated¶
- DataFrame.duplicated(subset=None, keep='first')[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/../../../../../opt/hostedtoolcache/Python/3.9.20/x64/lib/python3.9/site-packages/modin/pandas/dataframe.py#L336-L343)¶
- Return boolean Series denoting duplicate rows. - Considering certain columns is optional. - Parameters:
- subset (column label or sequence of labels, optional) – Only consider certain columns for identifying duplicates, by default use all the columns. 
- keep ({'first', 'last', False}, default 'first') – - Determines which duplicates (if any) to mark. - first: Mark duplicates as- Trueexcept for the first occurrence.
- last: Mark duplicates as- Trueexcept for the last occurrence.
- False : Mark all duplicates as - True.
 
 
- Returns:
- Boolean series for each duplicated rows. 
- Return type:
 - See also - Index.duplicated
- Equivalent method on index. 
- Series.duplicated
- Equivalent method on Series. 
- Series.drop_duplicates
- Remove duplicate values from Series. 
- DataFrame.drop_duplicates
- Remove duplicate values from DataFrame. 
 - Examples - Consider dataset containing ramen rating. - >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 - By default, for each set of duplicated values, the first occurrence is set on False and all others on True. - >>> df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool - By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True. - >>> df.duplicated(keep='last') 0 True 1 False 2 False 3 False 4 False dtype: bool - By setting - keepon False, all duplicates are True.- >>> df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool - To find duplicates on specific column(s), use - subset.- >>> df.duplicated(subset=['brand']) 0 False 1 True 2 False 3 True 4 True dtype: bool