modin.pandas.DataFrame.rename¶
- DataFrame.rename(mapper: Renamer | None = None, *, index: Renamer | None = None, columns: Renamer | None = None, axis: Axis | None = None, copy: bool | None = None, inplace: bool = False, level: Level | None = None, errors: IgnoreRaise = 'ignore') DataFrame | None[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L1695-L1747)¶
- Rename columns or index labels. - Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. - Parameters:
- mapper (dict-like or function) – Dict-like or function transformations to apply to that axis’ values. Use either - mapperand- axisto specify the axis to target with- mapper, or- indexand- columns.
- index (dict-like or function) – Alternative to specifying axis ( - mapper, axis=0is equivalent to- index=mapper).
- columns (dict-like or function) – Alternative to specifying axis ( - mapper, axis=1is equivalent to- columns=mapper).
- axis ({0 or 'index', 1 or 'columns'}, default 0) – Axis to target with - mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.
- copy (bool, default True) – Also copy underlying data. copy has been ignored with Snowflake execution engine. 
- inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored. 
- level (int or level name, default None) – In case of a MultiIndex, only rename labels in the specified level. 
- errors ({'ignore', 'raise'}, default 'ignore') – If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored. 
 
- Returns:
- DataFrame with the renamed axis labels or None if - inplace=True.
- Return type:
- DataFrame or None 
- Raises:
- KeyError – If any of the labels is not found in the selected axis and “errors=’raise’”. 
 - See also - DataFrame.rename_axis
- Set the name of the axis. 
 - Examples - DataFrame.renamesupports two calling conventions- (index=index_mapper, columns=columns_mapper, ...)
- (mapper, axis={'index', 'columns'}, ...)
 - We highly recommend using keyword arguments to clarify your intent. - Rename columns using a mapping: - >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 - Rename index using a mapping: - >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 - Cast index labels to a different type: - >>> df.index Index([0, 1, 2], dtype='int64') - >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): ... KeyError: "['C'] not found in axis" - Using axis-style parameters: - >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 - >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6