modin.pandas.DataFrame.dropna¶
- DataFrame.dropna(*, axis: Axis = 0, how: str | NoDefault = _NoDefault.no_default, thresh: int | NoDefault = _NoDefault.no_default, subset: IndexLabel = None, inplace: bool = False)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L918-L930)¶
- Remove missing values. - Parameters:
- axis ({0 or 'index', 1 or 'columns'}, default 0) – - Determine if rows or columns which contain missing values are removed. - 0, or ‘index’ : Drop rows which contain missing values. 
- 1, or ‘columns’ : Drop columns which contain missing value. 
 - Changed in version 1.0.0: Pass tuple or list to drop on multiple axes. Only a single axis is allowed. 
- how ({'any', 'all'}, default 'any') – - Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. - ’any’ : If any NA values are present, drop that row or column. 
- ’all’ : If all values are NA, drop that row or column. 
 
- thresh (int, optional) – Require that many non-NA values. Cannot be combined with how. 
- subset (column label or sequence of labels, optional) – Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. 
- inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one. 
 
- Returns:
- DataFrame with NA entries dropped from it or None if - inplace=True.
- Return type:
 - See also - DataFrame.isna
- Indicate missing values. 
- DataFrame.notna
- Indicate existing (non-missing) values. 
- DataFrame.fillna
- Replace missing values. 
- Series.dropna
- Drop missing values. 
- Index.dropna
- Drop missing indices. 
 - Examples - >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [None, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred None NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT - Drop the rows where at least one element is missing. - >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 - Drop the rows where all elements are missing. - >>> df.dropna(how='all') name toy born 0 Alfred None NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT - Keep only the rows with at least 2 non-NA values. - >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT - Define in which columns to look for missing values. - >>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT - Keep the DataFrame with valid entries in the same variable. - >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25