modin.pandas.DataFrame.count¶
- DataFrame.count(axis: Axis | None = 0, numeric_only: bool = False)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/base_overrides.py#L714-L728)¶
- Count non-NA cells for each column or row. - The values None, NaN, NaT are considered NA. - Parameters:
- axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. Not supported yet. 
- numeric_only (bool, default False) – Include only float, int or boolean data. 
 
- Returns:
- For each column/row the number of non-NA/null entries. 
- Return type:
- Snowpark pandas - Series
 - See also - Series.count
- Number of non-NA elements in a Series. 
- DataFrame.value_counts
- Count unique combinations of columns. 
- DataFrame.shape
- Number of DataFrame rows and columns (including NA elements). 
- DataFrame.isna
- Boolean same-sized DataFrame showing places of NA elements. 
 - Examples - Constructing DataFrame from a dictionary: - >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False - Notice the uncounted NA values: - >>> df.count() Person 5 Age 4 Single 5 dtype: int64