modin.pandas.Series.rename¶
- Series.rename(index: Renamer | Hashable | None = None, *, axis: Axis | None = None, copy: bool | None = None, inplace: bool = False, level: Level | None = None, errors: IgnoreRaise = 'ignore') Series | None[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.17.0/src/snowflake/snowpark/modin/pandas/series.py#L1700-L1745)¶
- Alter Series index labels or name. - Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. - Alternatively, change - Series.namewith a scalar value.- Parameters:
- index (scalar, hashable sequence, dict-like or function optional) – Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the - Series.nameattribute.
- axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DataFrame. 
- copy (bool, default True) – Also copy underlying data. copy has been ignored with Snowflake execution engine. 
- inplace (bool, default False) – Whether to return a new Series. If True the value of copy is ignored. 
- level (int or level name, default None) – In case of MultiIndex, only rename labels in the specified level. 
- errors ({'ignore', 'raise'}, default 'ignore') – If ‘raise’, raise KeyError when a dict-like mapper or index contains labels that are not present in the index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored. 
 
- Returns:
- Series with index labels or name altered or None if - inplace=True.
- Return type:
- Series or None 
 - See also - DataFrame.rename
- Corresponding DataFrame method. 
- Series.rename_axis
- Set the name of the axis. 
 - Examples - >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64