modin.pandas.Series.max¶
- Series.max(axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs: Any)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.17.0/src/snowflake/snowpark/modin/pandas/base.py#L2162-L2178)¶
- Return the maximum of the values over the requested axis. - If you want the index of the maximum, use - idxmax. This is the equivalent of the- numpy.ndarraymethod- argmax.- Parameters:
- axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. 
- skipna (bool, default True) – Exclude NA/null values when computing the result. 
- numeric_only (bool, default False) – If True, Include only float, int, boolean columns. Not implemented for Series. 
- **kwargs – Additional keyword arguments to be passed to the function. 
 
- Return type:
 - Examples - >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 - >>> s.max() 8