AWS 上的外部网络访问和专用连接¶
本主题提供配置详细信息,通过 外部网络访问 设置对 AWS 外部服务的出站专用连接。出站公共连接和出站专用连接配置之间的主要区别在于,使用专用连接时,您必须执行以下操作:
创建专用连接端点。此步骤需要 ACCOUNTADMIN 角色。
创建网络规则,以便将
TYPE
属性设置为PRIVATE_HOST_PORT
。
出站专用连接成本¶
您为每个专用连接端点以及处理的总数据量付费。有关这些项目的定价,请参阅 Snowflake 服务使用量表。
在 ACCOUNT_USAGE 和 ORGANIZATION_USAGE 架构中查询计费视图时,可以通过筛选以下服务类型来查看这些项目的成本:
OUTBOUND_PRIVATELINK_ENDPOINT
OUTBOUND_PRIVATELINK_DATA_PROCESSED
例如,您可以查询 USAGE_IN_CURRENCY_DAILY 视图并筛选这些服务类型。
设置到外部 Amazon S3 服务的专用连接:¶
调用 SYSTEM$PROVISION_PRIVATELINK_ENDPOINT 系统函数以指定 Snowflake 正连接到 AWS S3 服务,以及连接到服务时使用的主机名:
USE ROLE ACCOUNTADMIN; SELECT SYSTEM$PROVISION_PRIVATELINK_ENDPOINT( 'com.amazonaws.us-west-2.s3', '*.s3.us-west-2.amazonaws.com' );
备注
*.s3.us-west-2.amazonaws.com
中的星号指定您可以使用端点访问多个 S3 桶。执行以下 SQL 语句,以创建允许 Snowflake 向外部目标发送请求的网络规则,确保将
TYPE
属性设置为PRIVATE_HOST_PORT
:CREATE OR REPLACE NETWORK RULE aws_s3_network_rule MODE = EGRESS TYPE = PRIVATE_HOST_PORT VALUE_LIST = ('external-access-iam-bucket.s3.us-west-2.amazonaws.com');
执行以下 SQL 语句,以创建针对外部 API 身份验证的安全集成:
CREATE OR REPLACE SECURITY INTEGRATION aws_s3_security_integration TYPE = API_AUTHENTICATION AUTH_TYPE = AWS_IAM ENABLED = TRUE AWS_ROLE_ARN = 'arn:aws:iam::736112632310:role/external-access-iam-bucket';
执行以下 SQL 语句,以获取针对 IAM 用户的
STORAGE_AWS_IAM_USER_ARN
和STORAGE_AWS_EXTERNAL_ID
值:DESC SECURITY INTEGRATION aws_s3_security_integration;
使用
STORAGE_AWS_IAM_USER_ARN
和STORAGE_AWS_EXTERNAL_ID
值,按照 选项 1:配置 Snowflake 存储集成以访问 Amazon S3 中 第 5 步 授予对 Amazon S3 服务的 IAM 用户访问权限。执行以下 SQL 语句以创建令牌,用于 AWS S3 服务的身份验证:
CREATE OR REPLACE SECRET aws_s3_access_token TYPE = CLOUD_PROVIDER_TOKEN API_AUTHENTICATION = aws_s3_security_integration;
执行以下 SQL 语句以创建外部访问集成,使用前面步骤中创建的网络规则和令牌:
CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION aws_s3_external_access_integration ALLOWED_NETWORK_RULES = (aws_s3_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (aws_s3_access_token) ENABLED = TRUE COMMENT = 'Testing S3 connectivity';
执行以下 SQL 语句之一,以创建可以使用外部访问集成和以前创建的令牌的函数:
CREATE OR REPLACE FUNCTION aws_s3_python_function() RETURNS VARCHAR LANGUAGE PYTHON EXTERNAL_ACCESS_INTEGRATIONS = (aws_s3_external_access_integration) RUNTIME_VERSION = '3.8' SECRETS = ('cred' = aws_s3_access_token) PACKAGES = ('boto3') HANDLER = 'main_handler' AS $$ import boto3 import _snowflake from botocore.config import Config def main_handler(): # Get the previously created token as an object cloud_provider_object = _snowflake.get_cloud_provider_token('cred') # Configure boto3 connection settings config = Config( retries=dict(total_max_attempts=9), connect_timeout=30, read_timeout=30, max_pool_connections=50 ) # Connect to S3 using boto3 s3 = boto3.client( 's3', region_name='us-west-2', aws_access_key_id=cloud_provider_object.access_key_id, aws_secret_access_key=cloud_provider_object.secret_access_key, aws_session_token=cloud_provider_object.token, config=config ) # Use the s3 object upload/download resources # ... return 'Successfully connected to AWS S3' $$;
CREATE OR REPLACE FUNCTION aws_s3_java_function() RETURNS STRING LANGUAGE JAVA EXTERNAL_ACCESS_INTEGRATIONS = (aws_s3_external_access_integration) SECRETS = ('cred' = aws_s3_access_token) HANDLER = 'AWSTokenProvider.handle' AS $$ import com.snowflake.snowpark_java.types.CloudProviderToken; import com.snowflake.snowpark_java.types.SnowflakeSecrets; public class AWSTokenProvider { public static String handle() { // Get the previously created token as an object SnowflakeSecrets sfSecret = SnowflakeSecrets.newInstance(); CloudProviderToken cloudProviderToken = sfSecret.getCloudProviderToken("cred"); // Create variables for the AWS session credentials String accessKeyId = cloudProviderToken.getAccessKeyId(); String secretAccessKey = cloudProviderToken.getSecretAccessKey(); String token = cloudProviderToken.getToken(); // Use the token to create an S3 client // ... return "Successfully connected to AWS S3 with the following access token: " + token; } } $$;
执行以下 SQL 语句之一,以运行您创建的函数:
SELECT aws_s3_python_function();
SELECT aws_s3_java_function();
设置与外部 Amazon Bedrock 服务的专用连接¶
调用 SYSTEM$PROVISION_PRIVATELINK_ENDPOINT 系统函数,指定 Snowflake 正连接到 AWS S3 和 Amazon Bedrock 服务,以及连接到服务时使用的主机名:
USE ROLE ACCOUNTADMIN; SELECT SYSTEM$PROVISION_PRIVATELINK_ENDPOINT( 'com.amazonaws.us-west-2.s3', '*.s3.us-west-2.amazonaws.com' ); SELECT SYSTEM$PROVISION_PRIVATELINK_ENDPOINT( 'com.amazonaws.us-west-2.bedrock-runtime', 'bedrock-runtime.us-west-2.amazonaws.com' );
执行以下 SQL 语句,以创建允许 Snowflake 向外部目标发送请求的网络规则,确保将
TYPE
属性设置为PRIVATE_HOST_PORT
:CREATE OR REPLACE NETWORK RULE bedrock_network_rule MODE = EGRESS TYPE = PRIVATE_HOST_PORT VALUE_LIST = ('bedrock-runtime.us-west-2.amazonaws.com');
执行以下 SQL 语句,以创建针对外部 API 身份验证的安全集成:
CREATE OR REPLACE SECURITY INTEGRATION bedrock_security_integration TYPE = API_AUTHENTICATION AUTH_TYPE = AWS_IAM ENABLED = TRUE AWS_ROLE_ARN = 'arn:aws:iam::736112632310:role/external-access-iam-bucket';
执行以下 SQL 语句,以获取针对 IAM 用户的
STORAGE_AWS_IAM_USER_ARN
和STORAGE_AWS_EXTERNAL_ID
值:DESC SECURITY INTEGRATION bedrock_security_integration;
使用
STORAGE_AWS_IAM_USER_ARN
和STORAGE_AWS_EXTERNAL_ID
值,按照 选项 1:配置 Snowflake 存储集成以访问 Amazon S3 中 第 5 步 授予对 Amazon Bedrock 服务的 IAM 用户访问权限。执行以下 SQL 语句以创建令牌,用于 AWS Bedrock 服务的身份验证:
CREATE OR REPLACE SECRET aws_bedrock_access_token TYPE = CLOUD_PROVIDER_TOKEN API_AUTHENTICATION = bedrock_security_integration;
执行以下 SQL 语句以创建外部访问集成,使用前面步骤中创建的网络规则和令牌:
CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION bedrock_external_access_integration ALLOWED_NETWORK_RULES = (bedrock_network_rule) ALLOWED_AUTHENTICATION_SECRETS=(aws_bedrock_access_token) ENABLED=true ;
执行以下 SQL 语句,以创建可以使用外部访问集成和以前创建的令牌的函数:
CREATE OR REPLACE FUNCTION bedrock_private_connectivity_tests( id INT, instructions VARCHAR, user_context VARCHAR, model_id VARCHAR ) RETURNS VARCHAR LANGUAGE PYTHON EXTERNAL_ACCESS_INTEGRATIONS = (bedrock_external_access_integration) RUNTIME_VERSION = '3.8' SECRETS = ('cred' = aws_bedrock_access_token) PACKAGES = ('boto3') HANDLER = 'bedrock_py' AS $$ import boto3 import json import _snowflake def bedrock_py(id, instructions, user_context, model_id): # Get the previously created token as an object cloud_provider_object = _snowflake.get_cloud_provider_token('cred') cloud_provider_dictionary = { "ACCESS_KEY_ID": cloud_provider_object.access_key_id, "SECRET_ACCESS_KEY": cloud_provider_object.secret_access_key, "TOKEN": cloud_provider_object.token } # Assign AWS credentials and choose a region boto3_session_args = { 'aws_access_key_id': cloud_provider_dictionary["ACCESS_KEY_ID"], 'aws_secret_access_key': cloud_provider_dictionary["SECRET_ACCESS_KEY"], 'aws_session_token': cloud_provider_dictionary["TOKEN"], 'region_name': 'us-west-2' } session = boto3.Session(**boto3_session_args) client = session.client('bedrock-runtime') # Prepare the request body for the specified model def prepare_request_body(model_id, instructions, user_context): default_max_tokens = 512 default_temperature = 0.7 default_top_p = 1.0 if model_id == 'amazon.titan-text-express-v1': body = { "inputText": f"<SYSTEM>Follow these:{instructions}<END_SYSTEM>\n<USER_CONTEXT>Use this user context in your response:{user_context}<END_USER_CONTEXT>", "textGenerationConfig": { "maxTokenCount": default_max_tokens, "stopSequences": [], "temperature": default_temperature, "topP": default_top_p } } elif model_id == 'ai21.j2-ultra-v1': body = { "prompt": f"<SYSTEM>Follow these:{instructions}<END_SYSTEM>\n<USER_CONTEXT>Use this user context in your response:{user_context}<END_USER_CONTEXT>", "temperature": default_temperature, "topP": default_top_p, "maxTokens": default_max_tokens } elif model_id == 'anthropic.claude-3-sonnet-20240229-v1:0': body = { "max_tokens": default_max_tokens, "messages": [{"role": "user", "content": f"<SYSTEM>Follow these:{instructions}<END_SYSTEM>\n<USER_CONTEXT>Use this user context in your response:{user_context}<END_USER_CONTEXT>"}], "anthropic_version": "bedrock-2023-05-31" } else: raise ValueError("Unsupported model ID") return json.dumps(body) # Call Bedrock to get a completion body = prepare_request_body(model_id, instructions, user_context) response = client.invoke_model(modelId=model_id, body=body) response_body = json.loads(response.get('body').read()) # Parse the API response based on the model def get_completion_from_response(response_body, model_id): if model_id == 'amazon.titan-text-express-v1': output_text = response_body.get('results')[0].get('outputText') elif model_id == 'ai21.j2-ultra-v1': output_text = response_body.get('completions')[0].get('data').get('text') elif model_id == 'anthropic.claude-3-sonnet-20240229-v1:0': output_text = response_body.get('content')[0].get('text') else: raise ValueError("Unsupported model ID") return output_text # Get the generated text from Bedrock output_text = get_completion_from_response(response_body, model_id) return output_text $$;
执行以下 SQL 语句,以运行您创建的函数:
SELECT bedrock_private_connectivity_tests();