snowflake.snowpark.modin.plugin.extensions.resample_overrides.Resampler.quantile¶
- Resampler.quantile(q: Union[float, ExtensionArray, ndarray, Index, Series] = 0.5, **kwargs: Any) Union[DataFrame, Series][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/resample_overrides.py#L618-L633)¶
- Return value at the given quantile. - Parameters:
- q (float or array-like, default 0.5 (50% quantile)) – 
- Returns:
- Quantile of values within each group. 
- Return type:
 - See also - Series.quantile
- Return a series, where the index is q and the values are the quantiles. 
- DataFrame.quantile
- Return a - DataFrame, where the columns are the columns of self, and the values are the quantiles.
- DataFrameGroupBy.quantile
- Return a - DataFrame, where the columns are groupby columns, and the values are its quantiles.
 - Notes - List-like - qis not yet supported.- Examples - For Series: - >>> lst1 = pd.date_range('2020-01-01', periods=4, freq='1D') >>> ser1 = pd.Series([1, 2, 3, 4], index=lst1) >>> ser1 2020-01-01 1 2020-01-02 2 2020-01-03 3 2020-01-04 4 Freq: None, dtype: int64 - >>> ser1.resample('2D').quantile() 2020-01-01 1.5 2020-01-03 3.5 Freq: None, dtype: float64 - For DataFrame: - >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = pd.DataFrame(data, ... columns=["a", "b", "c"], ... index=pd.date_range('2020-01-01', periods=4, freq='1D')) >>> df a b c 2020-01-01 1 8 2 2020-01-02 1 2 5 2020-01-03 2 5 8 2020-01-04 2 6 9 - >>> df.resample('2D').quantile(q=0.2) a b c 2020-01-01 1.0 3.199 2.6 2020-01-03 2.0 5.200 8.2