snowflake.snowpark.modin.plugin.extensions.resample_overrides.Resampler.max¶
- Resampler.max(numeric_only: bool = False, min_count: int = 0, *args: Any, **kwargs: Any) Union[DataFrame, Series][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/resample_overrides.py#L411-L432)¶
- Compute maximum of resample bins. - Parameters:
- numeric_only (bool, default False) – Include only float, int, boolean columns. 
- min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than - min_countnon-NA values are present the result will be NA.
- engine (str, default None) – This parameter is ignored in Snowpark pandas. The execution engine will always be Snowflake. 
- engine_kwargs (dict, default None) – This parameter is ignored in Snowpark pandas. The execution engine will always be Snowflake. 
 
- Returns:
- Computed maximum of values within each resample bin. 
- Return type:
 - Examples - For Series: - >>> lst1 = pd.date_range('2020-01-01', periods=4, freq='1D') >>> ser1 = pd.Series([1, 2, 3, 4], index=lst1) >>> ser1 2020-01-01 1 2020-01-02 2 2020-01-03 3 2020-01-04 4 Freq: None, dtype: int64 - >>> ser1.resample('2D').max() 2020-01-01 2 2020-01-03 4 Freq: None, dtype: int64 - >>> lst2 = pd.date_range('2020-01-01', periods=4, freq='S') >>> ser2 = pd.Series([1, 2, np.nan, 4], index=lst2) >>> ser2 2020-01-01 00:00:00 1.0 2020-01-01 00:00:01 2.0 2020-01-01 00:00:02 NaN 2020-01-01 00:00:03 4.0 Freq: None, dtype: float64 - >>> ser2.resample('2S').max() 2020-01-01 00:00:00 2.0 2020-01-01 00:00:02 4.0 Freq: None, dtype: float64 - For DataFrame: - >>> data = [[1, 8], [1, 2], [2, 5], [2, 6]] >>> df1 = pd.DataFrame(data, ... columns=["a", "b"], ... index=pd.date_range('2020-01-01', periods=4, freq='1D')) >>> df1 a b 2020-01-01 1 8 2020-01-02 1 2 2020-01-03 2 5 2020-01-04 2 6 - >>> df1.resample('2D').max() a b 2020-01-01 1 8 2020-01-03 2 6 - >>> df2 = pd.DataFrame( ... {'A': [1, 2, 3, np.nan], 'B': [np.nan, np.nan, 3, 4]}, ... index=pd.date_range('2020-01-01', periods=4, freq='1S')) >>> df2 A B 2020-01-01 00:00:00 1.0 NaN 2020-01-01 00:00:01 2.0 NaN 2020-01-01 00:00:02 3.0 3.0 2020-01-01 00:00:03 NaN 4.0 - >>> df2.resample('2S').max() A B 2020-01-01 00:00:00 2.0 NaN 2020-01-01 00:00:02 3.0 4.0