modin.pandas.DataFrame.iterrows¶
- DataFrame.iterrows() Iterator[tuple[Hashable, modin.pandas.series.Series]][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L2184-L2200)¶
- Iterate over - DataFramerows as (index,- Series) pairs.- Yields:
- index (label or tuple of label) – The index of the row. A tuple for a MultiIndex. 
- data (Series) – The data of the row as a Series. 
 
 - See also - DataFrame.itertuples
- Iterate over DataFrame rows as namedtuples of the values. 
- DataFrame.items
- Iterate over (column name, Series) pairs. 
 - Notes - Iterating over rows is an antipattern in Snowpark pandas and pandas. Use df.apply() or other aggregation methods when possible instead of iterating over a DataFrame. Iterators and for loops do not scale well. 
- Because - iterrowsreturns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames).
- You should never modify something you are iterating over. This will not work. The iterator returns a copy of the data and writing to it will have no effect. 
 - Examples - >>> df = pd.DataFrame([[1, 1.5], [2, 2.5], [3, 7.8]], columns=['int', 'float']) >>> df int float 0 1 1.5 1 2 2.5 2 3 7.8 - Print the first row’s index and the row as a Series. >>> index_and_row = next(df.iterrows()) >>> index_and_row (0, int 1.0 float 1.5 Name: 0, dtype: float64) - Print the first row as a Series. >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 - Pretty printing every row. >>> for row in df.iterrows(): … print(row[1]) … int 1.0 float 1.5 Name: 0, dtype: float64 int 2.0 float 2.5 Name: 1, dtype: float64 int 3.0 float 7.8 Name: 2, dtype: float64 - >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1]], columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 - Pretty printing the results to distinguish index and Series. >>> for row in df.iterrows(): … print(f”Index: {row[0]}”) … print(“Series:”) … print(row[1]) … Index: 0 Series: A 0 B 2 C 3 Name: 0, dtype: int64 Index: 1 Series: A 0 B 4 C 1 Name: 1, dtype: int64