snowflake.snowpark.DataFrame.to_pandas_batches¶
- DataFrame.to_pandas_batches(*, statement_params: Optional[Dict[str, str]] = None, block: bool = True, **kwargs: Dict[str, Any]) Iterator[pandas.DataFrame][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/dataframe.py#L851-L900)¶
- DataFrame.to_pandas_batches(*, statement_params: Optional[Dict[str, str]] = None, block: bool = False, **kwargs: Dict[str, Any]) AsyncJob
- Executes the query representing this DataFrame and returns an iterator of pandas dataframes (containing a subset of rows) that you can use to retrieve the results. - Unlike - to_pandas(), this method does not load all data into memory at once.- Example: - >>> df = session.create_dataframe([[1, 2], [3, 4]], schema=["a", "b"]) >>> for pandas_df in df.to_pandas_batches(): ... print(pandas_df) A B 0 1 2 1 3 4 - Parameters:
- statement_params – Dictionary of statement level parameters to be set while executing this action. 
- block – A bool value indicating whether this function will wait until the result is available. When it is - False, this function executes the underlying queries of the dataframe asynchronously and returns an- AsyncJob.
 
 - Note - This method is only available if pandas is installed and available. 
 - 2. If you use - Session.sql()with this method, the input query of- Session.sql()can only be a SELECT statement.