snowflake.snowpark.DataFrame.select¶
- DataFrame.select(*cols: Union[Column, str, TableFunctionCall, Iterable[Union[Column, str, TableFunctionCall]]]) DataFrame[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/dataframe.py#L1076-L1206)¶
- Returns a new DataFrame with the specified Column expressions as output (similar to SELECT in SQL). Only the Columns specified as arguments will be present in the resulting DataFrame. - You can use any - Columnexpression or strings for named columns.- Example 1::
- >>> df = session.create_dataframe([[1, "some string value", 3, 4]], schema=["col1", "col2", "col3", "col4"]) >>> df_selected = df.select(col("col1"), col("col2").substr(0, 10), df["col3"] + df["col4"]) 
 - Example 2: - >>> df_selected = df.select("col1", "col2", "col3") - Example 3: - >>> df_selected = df.select(["col1", "col2", "col3"]) - Example 4: - >>> df_selected = df.select(df["col1"], df.col2, df.col("col3")) - Example 5: - >>> from snowflake.snowpark.functions import table_function >>> split_to_table = table_function("split_to_table") >>> df.select(df.col1, split_to_table(df.col2, lit(" ")), df.col("col3")).show() ----------------------------------------------- |"COL1" |"SEQ" |"INDEX" |"VALUE" |"COL3" | ----------------------------------------------- |1 |1 |1 |some |3 | |1 |1 |2 |string |3 | |1 |1 |3 |value |3 | ----------------------------------------------- - Note - A TableFunctionCall can be added in select when the dataframe results from another join. This is possible because we know the hierarchy in which the joins are applied. - Parameters:
- *cols – A - Column,- str,- table_function.TableFunctionCall, or a list of those. Note that at most one- table_function.TableFunctionCallobject is supported within a select call.