modin.pandas.DataFrame.transpose¶
- DataFrame.transpose(copy=False, *args)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L2053-L2073)¶
- Transpose index and columns. - Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property T is an accessor to the method transpose(). - Parameters:
- tuple (*args) – Accepted for compatibility with NumPy. Note these arguments are ignored in the snowpark pandas implementation unless go through a fallback path, in which case they may be used by the native pandas implementation. 
- optional – Accepted for compatibility with NumPy. Note these arguments are ignored in the snowpark pandas implementation unless go through a fallback path, in which case they may be used by the native pandas implementation. 
- bool (copy) – Whether to copy the data after transposing, even for DataFrames with a single dtype. The snowpark pandas implementation ignores this parameter. 
- False (default) – Whether to copy the data after transposing, even for DataFrames with a single dtype. The snowpark pandas implementation ignores this parameter. 
- DataFrames (Note that a copy is always required for mixed dtype) – 
- types. (or for DataFrames with any extension) – 
 
- Returns:
- DataFrame
- The transposed DataFrame. 
 
 - Examples::
- Square DataFrame with homogeneous dtype - >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 - >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 - When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: - >>> df1.dtypes col1 int64 col2 int64 dtype: object - >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object - Non-square DataFrame with mixed dtypes - >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 - >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8.0 employed False True kids 0 0 - When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: - >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object - >>> df2_transposed.dtypes 0 object 1 object dtype: object