snowflake.snowpark.modin.plugin.extensions.groupby_overrides.DataFrameGroupBy.min¶
- DataFrameGroupBy.min(numeric_only: bool = False, min_count: int = - 1, engine: Optional[Literal['cython', 'numba']] = None, engine_kwargs: Optional[dict[str, bool]] = None)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/groupby_overrides.py#L669-L685)¶
- Compute min of group values. - Parameters:
- numeric_only (bool, default False) – Include only float, int, boolean columns. 
- min_count (int, default -1) – The required number of valid values to perform the operation. If fewer than - min_countnon-NA values are present the result will be NA.
- engine (str, default None None) – - 'cython': Runs rolling apply through C-extensions from cython.
- 'numba'Runs rolling apply through JIT compiled code from numba.
- Only available when - rawis set to- True.
 
- None: Defaults to- 'cython'or globally setting- compute.use_numba
 - This parameter is ignored in Snowpark pandas. The execution engine will always be Snowflake. 
- engine_kwargs (dict, default None None) – - For - 'cython'engine, there are no accepted- engine_kwargs
- For 'numba'engine, the engine can acceptnopython,nogil
- and - paralleldictionary keys. The values must either be- Trueor- False. The default- engine_kwargsfor the- 'numba'engine is- {'nopython': True, 'nogil': False, 'parallel': False}and will be applied to both the- funcand the- applygroupby aggregation.
 
- For 
 - This parameter is ignored in Snowpark pandas. The execution engine will always be Snowflake. 
 
- Returns:
- Computed min of values within each group. 
- Return type:
 - Examples - For SeriesGroupBy: - >>> lst = ['a', 'a', 'b', 'b'] >>> ser = pd.Series([1, 2, 3, 4], index=lst) >>> ser a 1 a 2 b 3 b 4 dtype: int64 >>> ser.groupby(level=0).min() a 1 b 3 dtype: int64 - For DataFrameGroupBy: - >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["tiger", "leopard", "cheetah", "lion"]) >>> df a b c tiger 1 8 2 leopard 1 2 5 cheetah 2 5 8 lion 2 6 9 >>> df.groupby("a").min() b c a 1 2 2 2 5 8