snowflake.ml.modeling¶
snowflake.ml.modeling.calibration¶
Classes
|
Probability calibration with isotonic regression or logistic regression For more details on this class, see sklearn.calibration.CalibratedClassifierCV (https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html) |
snowflake.ml.modeling.cluster¶
Classes
|
Perform Affinity Propagation Clustering of data For more details on this class, see sklearn.cluster.AffinityPropagation (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html) |
|
Agglomerative Clustering For more details on this class, see sklearn.cluster.AgglomerativeClustering (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html) |
|
Implements the BIRCH clustering algorithm For more details on this class, see sklearn.cluster.Birch (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html) |
|
Bisecting K-Means clustering For more details on this class, see sklearn.cluster.BisectingKMeans (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html) |
|
Perform DBSCAN clustering from vector array or distance matrix For more details on this class, see sklearn.cluster.DBSCAN (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) |
|
Agglomerate features For more details on this class, see sklearn.cluster.FeatureAgglomeration (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html) |
|
K-Means clustering For more details on this class, see sklearn.cluster.KMeans (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) |
|
Mean shift clustering using a flat kernel For more details on this class, see sklearn.cluster.MeanShift (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html) |
|
Mini-Batch K-Means clustering For more details on this class, see sklearn.cluster.MiniBatchKMeans (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html) |
|
Estimate clustering structure from vector array For more details on this class, see sklearn.cluster.OPTICS (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html) |
|
Spectral biclustering (Kluger, 2003) For more details on this class, see sklearn.cluster.SpectralBiclustering (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html) |
|
Apply clustering to a projection of the normalized Laplacian For more details on this class, see sklearn.cluster.SpectralClustering (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html) |
|
Spectral Co-Clustering algorithm (Dhillon, 2001) For more details on this class, see sklearn.cluster.SpectralCoclustering (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralCoclustering.html) |
snowflake.ml.modeling.compose¶
Classes
|
Applies transformers to columns of an array or pandas DataFrame For more details on this class, see sklearn.compose.ColumnTransformer (https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html) |
|
Meta-estimator to regress on a transformed target For more details on this class, see sklearn.compose.TransformedTargetRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html) |
snowflake.ml.modeling.covariance¶
Classes
|
An object for detecting outliers in a Gaussian distributed dataset For more details on this class, see sklearn.covariance.EllipticEnvelope (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html) |
|
Maximum likelihood covariance estimator For more details on this class, see sklearn.covariance.EmpiricalCovariance (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EmpiricalCovariance.html) |
|
Sparse inverse covariance estimation with an l1-penalized estimator For more details on this class, see sklearn.covariance.GraphicalLasso (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.GraphicalLasso.html) |
|
Sparse inverse covariance w/ cross-validated choice of the l1 penalty For more details on this class, see sklearn.covariance.GraphicalLassoCV (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.GraphicalLassoCV.html) |
|
LedoitWolf Estimator For more details on this class, see sklearn.covariance.LedoitWolf (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html) |
|
Minimum Covariance Determinant (MCD): robust estimator of covariance For more details on this class, see sklearn.covariance.MinCovDet (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html) |
|
Oracle Approximating Shrinkage Estimator as proposed in [1]_ For more details on this class, see sklearn.covariance.OAS (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.OAS.html) |
|
Covariance estimator with shrinkage For more details on this class, see sklearn.covariance.ShrunkCovariance (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.html) |
snowflake.ml.modeling.decomposition¶
Classes
|
Dictionary learning For more details on this class, see sklearn.decomposition.DictionaryLearning (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html) |
|
Factor Analysis (FA) For more details on this class, see sklearn.decomposition.FactorAnalysis (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html) |
|
FastICA: a fast algorithm for Independent Component Analysis For more details on this class, see sklearn.decomposition.FastICA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html) |
|
Incremental principal components analysis (IPCA) For more details on this class, see sklearn.decomposition.IncrementalPCA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html) |
|
Kernel Principal component analysis (KPCA) [1]_ For more details on this class, see sklearn.decomposition.KernelPCA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html) |
|
Mini-batch dictionary learning For more details on this class, see sklearn.decomposition.MiniBatchDictionaryLearning (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.html) |
|
Mini-batch Sparse Principal Components Analysis For more details on this class, see sklearn.decomposition.MiniBatchSparsePCA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchSparsePCA.html) |
|
Principal component analysis (PCA) For more details on this class, see sklearn.decomposition.PCA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) |
|
Sparse Principal Components Analysis (SparsePCA) For more details on this class, see sklearn.decomposition.SparsePCA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html) |
|
Dimensionality reduction using truncated SVD (aka LSA) For more details on this class, see sklearn.decomposition.TruncatedSVD (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html) |
snowflake.ml.modeling.discriminant_analysis¶
Classes
|
Linear Discriminant Analysis For more details on this class, see sklearn.discriminant_analysis.LinearDiscriminantAnalysis (https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html) |
|
Quadratic Discriminant Analysis For more details on this class, see sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis (https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html) |
snowflake.ml.modeling.ensemble¶
Classes
|
An AdaBoost classifier For more details on this class, see sklearn.ensemble.AdaBoostClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) |
|
An AdaBoost regressor For more details on this class, see sklearn.ensemble.AdaBoostRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html) |
|
A Bagging classifier For more details on this class, see sklearn.ensemble.BaggingClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html) |
|
A Bagging regressor For more details on this class, see sklearn.ensemble.BaggingRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html) |
|
An extra-trees classifier For more details on this class, see sklearn.ensemble.ExtraTreesClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html) |
|
An extra-trees regressor For more details on this class, see sklearn.ensemble.ExtraTreesRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html) |
|
Gradient Boosting for classification For more details on this class, see sklearn.ensemble.GradientBoostingClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html) |
|
Gradient Boosting for regression For more details on this class, see sklearn.ensemble.GradientBoostingRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html) |
|
Histogram-based Gradient Boosting Classification Tree For more details on this class, see sklearn.ensemble.HistGradientBoostingClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html) |
|
Histogram-based Gradient Boosting Regression Tree For more details on this class, see sklearn.ensemble.HistGradientBoostingRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html) |
|
Isolation Forest Algorithm For more details on this class, see sklearn.ensemble.IsolationForest (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html) |
|
A random forest classifier For more details on this class, see sklearn.ensemble.RandomForestClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html) |
|
A random forest regressor For more details on this class, see sklearn.ensemble.RandomForestRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html) |
|
Stack of estimators with a final regressor For more details on this class, see sklearn.ensemble.StackingRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html) |
|
Soft Voting/Majority Rule classifier for unfitted estimators For more details on this class, see sklearn.ensemble.VotingClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html) |
|
Prediction voting regressor for unfitted estimators For more details on this class, see sklearn.ensemble.VotingRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html) |
snowflake.ml.modeling.feature_selection¶
Classes
|
Univariate feature selector with configurable strategy For more details on this class, see sklearn.feature_selection.GenericUnivariateSelect (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html) |
|
Filter: Select the p-values for an estimated false discovery rate For more details on this class, see sklearn.feature_selection.SelectFdr (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFdr.html) |
|
Filter: Select the pvalues below alpha based on a FPR test For more details on this class, see sklearn.feature_selection.SelectFpr (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFpr.html) |
|
Filter: Select the p-values corresponding to Family-wise error rate For more details on this class, see sklearn.feature_selection.SelectFwe (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFwe.html) |
|
Select features according to the k highest scores For more details on this class, see sklearn.feature_selection.SelectKBest (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html) |
|
Select features according to a percentile of the highest scores For more details on this class, see sklearn.feature_selection.SelectPercentile (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html) |
|
Transformer that performs Sequential Feature Selection For more details on this class, see sklearn.feature_selection.SequentialFeatureSelector (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html) |
|
Feature selector that removes all low-variance features For more details on this class, see sklearn.feature_selection.VarianceThreshold (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html) |
snowflake.ml.modeling.gaussian_process¶
Classes
|
Gaussian process classification (GPC) based on Laplace approximation For more details on this class, see sklearn.gaussian_process.GaussianProcessClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html) |
|
Gaussian process regression (GPR) For more details on this class, see sklearn.gaussian_process.GaussianProcessRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html) |
snowflake.ml.modeling.impute¶
Classes
|
Multivariate imputer that estimates each feature from all the others For more details on this class, see sklearn.impute.IterativeImputer (https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html) |
|
Imputation for completing missing values using k-Nearest Neighbors For more details on this class, see sklearn.impute.KNNImputer (https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html) |
|
Binary indicators for missing values For more details on this class, see sklearn.impute.MissingIndicator (https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html) |
|
Univariate imputer for completing missing values with simple strategies. |
snowflake.ml.modeling.kernel_approximation¶
Classes
|
Approximate feature map for additive chi2 kernel For more details on this class, see sklearn.kernel_approximation.AdditiveChi2Sampler (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html) |
|
Approximate a kernel map using a subset of the training data For more details on this class, see sklearn.kernel_approximation.Nystroem (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html) |
|
Polynomial kernel approximation via Tensor Sketch For more details on this class, see sklearn.kernel_approximation.PolynomialCountSketch (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.PolynomialCountSketch.html) |
|
Approximate a RBF kernel feature map using random Fourier features For more details on this class, see sklearn.kernel_approximation.RBFSampler (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html) |
|
Approximate feature map for "skewed chi-squared" kernel For more details on this class, see sklearn.kernel_approximation.SkewedChi2Sampler (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html) |
snowflake.ml.modeling.kernel_ridge¶
Classes
|
Kernel ridge regression For more details on this class, see sklearn.kernel_ridge.KernelRidge (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html) |
snowflake.ml.modeling.lightgbm¶
Classes
|
LightGBM classifier For more details on this class, see lightgbm.LGBMClassifier (https://lightgbm.readthedocs.io/en/stable/pythonapi/lightgbm.LGBMClassifier.html) |
|
LightGBM regressor For more details on this class, see lightgbm.LGBMRegressor (https://lightgbm.readthedocs.io/en/stable/pythonapi/lightgbm.LGBMRegressor.html) |
snowflake.ml.modeling.linear_model¶
Classes
|
Bayesian ARD regression For more details on this class, see sklearn.linear_model.ARDRegression (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html) |
|
Bayesian ridge regression For more details on this class, see sklearn.linear_model.BayesianRidge (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html) |
|
Linear regression with combined L1 and L2 priors as regularizer For more details on this class, see sklearn.linear_model.ElasticNet (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html) |
|
Elastic Net model with iterative fitting along a regularization path For more details on this class, see sklearn.linear_model.ElasticNetCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html) |
|
Generalized Linear Model with a Gamma distribution For more details on this class, see sklearn.linear_model.GammaRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.GammaRegressor.html) |
|
L2-regularized linear regression model that is robust to outliers For more details on this class, see sklearn.linear_model.HuberRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html) |
|
Least Angle Regression model a For more details on this class, see sklearn.linear_model.Lars (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html) |
|
Cross-validated Least Angle Regression model For more details on this class, see sklearn.linear_model.LarsCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LarsCV.html) |
|
Linear Model trained with L1 prior as regularizer (aka the Lasso) For more details on this class, see sklearn.linear_model.Lasso (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html) |
|
Lasso linear model with iterative fitting along a regularization path For more details on this class, see sklearn.linear_model.LassoCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html) |
|
Lasso model fit with Least Angle Regression a For more details on this class, see sklearn.linear_model.LassoLars (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html) |
|
Cross-validated Lasso, using the LARS algorithm For more details on this class, see sklearn.linear_model.LassoLarsCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html) |
|
Lasso model fit with Lars using BIC or AIC for model selection For more details on this class, see sklearn.linear_model.LassoLarsIC (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html) |
|
Ordinary least squares Linear Regression For more details on this class, see sklearn.linear_model.LinearRegression (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html) |
|
Logistic Regression (aka logit, MaxEnt) classifier For more details on this class, see sklearn.linear_model.LogisticRegression (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) |
|
Logistic Regression CV (aka logit, MaxEnt) classifier For more details on this class, see sklearn.linear_model.LogisticRegressionCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html) |
|
Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer For more details on this class, see sklearn.linear_model.MultiTaskElasticNet (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html) |
|
Multi-task L1/L2 ElasticNet with built-in cross-validation For more details on this class, see sklearn.linear_model.MultiTaskElasticNetCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNetCV.html) |
|
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer For more details on this class, see sklearn.linear_model.MultiTaskLasso (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLasso.html) |
|
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer For more details on this class, see sklearn.linear_model.MultiTaskLassoCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLassoCV.html) |
|
Orthogonal Matching Pursuit model (OMP) For more details on this class, see sklearn.linear_model.OrthogonalMatchingPursuit (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html) |
|
Passive Aggressive Classifier For more details on this class, see sklearn.linear_model.PassiveAggressiveClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html) |
|
Passive Aggressive Regressor For more details on this class, see sklearn.linear_model.PassiveAggressiveRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html) |
|
Linear perceptron classifier For more details on this class, see sklearn.linear_model.Perceptron (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html) |
|
Generalized Linear Model with a Poisson distribution For more details on this class, see sklearn.linear_model.PoissonRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PoissonRegressor.html) |
|
RANSAC (RANdom SAmple Consensus) algorithm For more details on this class, see sklearn.linear_model.RANSACRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html) |
|
Linear least squares with l2 regularization For more details on this class, see sklearn.linear_model.Ridge (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html) |
|
Classifier using Ridge regression For more details on this class, see sklearn.linear_model.RidgeClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html) |
|
Ridge classifier with built-in cross-validation For more details on this class, see sklearn.linear_model.RidgeClassifierCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html) |
|
Ridge regression with built-in cross-validation For more details on this class, see sklearn.linear_model.RidgeCV (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html) |
|
Linear classifiers (SVM, logistic regression, etc For more details on this class, see sklearn.linear_model.SGDClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html) |
|
Solves linear One-Class SVM using Stochastic Gradient Descent For more details on this class, see sklearn.linear_model.SGDOneClassSVM (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) |
|
Linear model fitted by minimizing a regularized empirical loss with SGD For more details on this class, see sklearn.linear_model.SGDRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html) |
|
Theil-Sen Estimator: robust multivariate regression model For more details on this class, see sklearn.linear_model.TheilSenRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html) |
|
Generalized Linear Model with a Tweedie distribution For more details on this class, see sklearn.linear_model.TweedieRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html) |
snowflake.ml.modeling.manifold¶
Classes
|
Isomap Embedding For more details on this class, see sklearn.manifold.Isomap (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html) |
|
Multidimensional scaling For more details on this class, see sklearn.manifold.MDS (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html) |
|
Spectral embedding for non-linear dimensionality reduction For more details on this class, see sklearn.manifold.SpectralEmbedding (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html) |
|
T-distributed Stochastic Neighbor Embedding For more details on this class, see sklearn.manifold.TSNE (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) |
snowflake.ml.modeling.metrics¶
Functions
|
Accuracy classification score. |
|
Compute confusion matrix to evaluate the accuracy of a classification. |
|
Pearson correlation matrix for the columns in a snowpark dataframe. |
|
Covariance matrix for the columns in a snowpark dataframe. |
|
regression score function, fraction of absolute error explained. |
|
regression score function, fraction of pinball loss explained. |
|
Explained variance regression score function. |
|
Compute the F1 score, also known as balanced F-score or F-measure. |
|
Compute the F-beta score. |
|
Log loss, aka logistic loss or cross-entropy loss. |
|
Mean absolute error regression loss. |
|
Mean absolute percentage error (MAPE) regression loss. |
|
Mean squared error regression loss. |
|
Compute precision-recall pairs for different probability thresholds. |
|
Compute precision, recall, F-measure and support for each class. |
|
Compute the precision. |
|
(coefficient of determination) regression score function. |
|
Compute the recall. |
|
Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. |
|
Compute Receiver operating characteristic (ROC). |
snowflake.ml.modeling.mixture¶
Classes
|
Variational Bayesian estimation of a Gaussian mixture For more details on this class, see sklearn.mixture.BayesianGaussianMixture (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html) |
|
Gaussian Mixture For more details on this class, see sklearn.mixture.GaussianMixture (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html) |
snowflake.ml.modeling.model_selection¶
Classes
|
Exhaustive search over specified parameter values for an estimator For more details on this class, see sklearn.model_selection.GridSearchCV (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html) |
|
Randomized search on hyper parameters For more details on this class, see sklearn.model_selection.RandomizedSearchCV (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html) |
snowflake.ml.modeling.multiclass¶
Classes
|
One-vs-one multiclass strategy For more details on this class, see sklearn.multiclass.OneVsOneClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html) |
|
One-vs-the-rest (OvR) multiclass strategy For more details on this class, see sklearn.multiclass.OneVsRestClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html) |
|
(Error-Correcting) Output-Code multiclass strategy For more details on this class, see sklearn.multiclass.OutputCodeClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OutputCodeClassifier.html) |
snowflake.ml.modeling.naive_bayes¶
Classes
|
Naive Bayes classifier for multivariate Bernoulli models For more details on this class, see sklearn.naive_bayes.BernoulliNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html) |
|
Naive Bayes classifier for categorical features For more details on this class, see sklearn.naive_bayes.CategoricalNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html) |
|
The Complement Naive Bayes classifier described in Rennie et al For more details on this class, see sklearn.naive_bayes.ComplementNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.ComplementNB.html) |
|
Gaussian Naive Bayes (GaussianNB) For more details on this class, see sklearn.naive_bayes.GaussianNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html) |
|
Naive Bayes classifier for multinomial models For more details on this class, see sklearn.naive_bayes.MultinomialNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html) |
snowflake.ml.modeling.neighbors¶
Classes
|
Kernel Density Estimation For more details on this class, see sklearn.neighbors.KernelDensity (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html) |
|
Classifier implementing the k-nearest neighbors vote For more details on this class, see sklearn.neighbors.KNeighborsClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html) |
|
Regression based on k-nearest neighbors For more details on this class, see sklearn.neighbors.KNeighborsRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html) |
|
Unsupervised Outlier Detection using the Local Outlier Factor (LOF) For more details on this class, see sklearn.neighbors.LocalOutlierFactor (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html) |
|
Nearest centroid classifier For more details on this class, see sklearn.neighbors.NearestCentroid (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html) |
|
Unsupervised learner for implementing neighbor searches For more details on this class, see sklearn.neighbors.NearestNeighbors (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html) |
|
Neighborhood Components Analysis For more details on this class, see sklearn.neighbors.NeighborhoodComponentsAnalysis (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html) |
|
Classifier implementing a vote among neighbors within a given radius For more details on this class, see sklearn.neighbors.RadiusNeighborsClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html) |
|
Regression based on neighbors within a fixed radius For more details on this class, see sklearn.neighbors.RadiusNeighborsRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html) |
snowflake.ml.modeling.neural_network¶
Classes
|
Bernoulli Restricted Boltzmann Machine (RBM) For more details on this class, see sklearn.neural_network.BernoulliRBM (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html) |
|
Multi-layer Perceptron classifier For more details on this class, see sklearn.neural_network.MLPClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html) |
|
Multi-layer Perceptron regressor For more details on this class, see sklearn.neural_network.MLPRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html) |
snowflake.ml.modeling.pipeline¶
Classes
|
Pipeline of transforms. |
snowflake.ml.modeling.preprocessing¶
|
Standardizes features by removing the mean and scaling to unit variance. |
|
Encodes categorical features as an integer array. |
|
Transforms features by scaling each feature to a given range, by default between zero and one. |
|
Encodes target labels with values between 0 and n_classes-1. |
|
Scales features using statistics that are robust to outliers. |
|
Bin continuous data into intervals. |
|
Scale each feature by its maximum absolute value. |
|
Normalize samples individually to each row's unit norm. |
|
Encode categorical features as a one-hot numeric array. |
|
Binarizes data (sets feature values to 0 or 1) according to the given threshold. |
|
Generate polynomial and interaction features For more details on this class, see sklearn.preprocessing.PolynomialFeatures (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) |
snowflake.ml.modeling.semi_supervised¶
Classes
|
Label Propagation classifier For more details on this class, see sklearn.semi_supervised.LabelPropagation (https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html) |
|
LabelSpreading model for semi-supervised learning For more details on this class, see sklearn.semi_supervised.LabelSpreading (https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html) |
snowflake.ml.modeling.svm¶
Classes
|
Linear Support Vector Classification For more details on this class, see sklearn.svm.LinearSVC (https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html) |
|
Linear Support Vector Regression For more details on this class, see sklearn.svm.LinearSVR (https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html) |
|
Nu-Support Vector Classification For more details on this class, see sklearn.svm.NuSVC (https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html) |
|
Nu Support Vector Regression For more details on this class, see sklearn.svm.NuSVR (https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html) |
|
C-Support Vector Classification For more details on this class, see sklearn.svm.SVC (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) |
|
Epsilon-Support Vector Regression For more details on this class, see sklearn.svm.SVR (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html) |
snowflake.ml.modeling.tree¶
Classes
|
A decision tree classifier For more details on this class, see sklearn.tree.DecisionTreeClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) |
|
A decision tree regressor For more details on this class, see sklearn.tree.DecisionTreeRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) |
|
An extremely randomized tree classifier For more details on this class, see sklearn.tree.ExtraTreeClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html) |
|
An extremely randomized tree regressor For more details on this class, see sklearn.tree.ExtraTreeRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html) |
snowflake.ml.modeling.xgboost¶
Classes
|
Implementation of the scikit-learn API for XGBoost classification For more details on this class, see xgboost.XGBClassifier (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier) |
|
Implementation of the scikit-learn API for XGBoost regression For more details on this class, see xgboost.XGBRegressor (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor) |
|
scikit-learn API for XGBoost random forest classification For more details on this class, see xgboost.XGBRFClassifier (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFClassifier) |
|
scikit-learn API for XGBoost random forest regression For more details on this class, see xgboost.XGBRFRegressor (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFRegressor) |