modin.pandas.DataFrame.transform¶
- DataFrame.transform(func: Callable[[Any], Any], axis: Union[int, Literal['index', 'columns', 'rows']] = 0, *args: Any, **kwargs: Any) DataFrame [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L2060-L2080)¶
Call
func
on self producing a Snowpark pandas DataFrame with the same axis shape as self.- Parameters:
func (function, str, list-like or dict-like) –
Function to use for transforming the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If func is both list-like and dict-like, dict-like behavior takes precedence.
Snowpark pandas currently only supports callable arguments, and does not yet support string, dict-like, or list-like arguments.
axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
*args – Positional arguments to pass to func.
**kwargs – Keyword arguments to pass to func.
Examples
Increment every value in DataFrame by 1.
>>> d1 = {'col1': [1, 2, 3], 'col2': [3, 4, 5]} >>> df = pd.DataFrame(data=d1) >>> df col1 col2 0 1 3 1 2 4 2 3 5 >>> df.transform(lambda x: x + 1, axis=1) col1 col2 0 2 4 1 3 5 2 4 6
Apply a numpy ufunc to every value in the DataFrame.
>>> df.transform(np.square, axis=1) col1 col2 0 1 9 1 4 16 2 9 25