modin.pandas.DataFrame.nlargest

DataFrame.nlargest(n, columns, keep='first') DataFrame[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/.tox/docs/lib/python3.9/site-packages/modin/pandas/dataframe.py#L1441-L1447)

Return the first n rows ordered by columns in descending order.

Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=False).head(n)

Parameters:
  • n (int) – Number of rows to return.

  • columns (label or list of labels) – Column label(s) to order by.

  • keep ({'first', 'last', 'all'}, default 'first') –

    Where there are duplicate values:

    • first : prioritize the first occurrence(s)

    • last : prioritize the last occurrence(s)

    • all : keep all the ties of the smallest item even if it means selecting more than n items.

Returns:

The first n rows ordered by the given columns in descending order.

Return type:

DataFrame

See also

DataFrame.nsmallest

Return the first n rows ordered by columns in ascending order.

DataFrame.sort_values

Sort DataFrame by the values.

DataFrame.head

Return the first n rows without re-ordering.

Examples

>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
...                                   434000, 434000, 337000, 11300,
...                                   11300, 11300],
...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
...                            17036, 182, 38, 311],
...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
...                                "IS", "NR", "TV", "AI"]},
...                   index=["Italy", "France", "Malta",
...                          "Maldives", "Brunei", "Iceland",
...                          "Nauru", "Tuvalu", "Anguilla"])
>>> df
          population      GDP alpha-2
Italy       59000000  1937894      IT
France      65000000  2583560      FR
Malta         434000    12011      MT
Maldives      434000     4520      MV
Brunei        434000    12128      BN
Iceland       337000    17036      IS
Nauru          11300      182      NR
Tuvalu         11300       38      TV
Anguilla       11300      311      AI
Copy

In the following example, we will use nlargest to select the three rows having the largest values in column “population”.

>>> df.nlargest(3, 'population')
        population      GDP alpha-2
France    65000000  2583560      FR
Italy     59000000  1937894      IT
Malta       434000    12011      MT
Copy

When using keep='last', ties are resolved in reverse order:

>>> df.nlargest(3, 'population', keep='last')
        population      GDP alpha-2
France    65000000  2583560      FR
Italy     59000000  1937894      IT
Brunei      434000    12128      BN
Copy

When using keep='all', the number of element kept can go beyond n if there are duplicate values for the smallest element, all the ties are kept:

>>> df.nlargest(3, 'population', keep='all')  
          population      GDP alpha-2
France      65000000  2583560      FR
Italy       59000000  1937894      IT
Malta         434000    12011      MT
Maldives      434000     4520      MV
Brunei        434000    12128      BN
Copy

However, nlargest does not keep n distinct largest elements:

>>> df.nlargest(5, 'population', keep='all')  
          population      GDP alpha-2
France      65000000  2583560      FR
Italy       59000000  1937894      IT
Malta         434000    12011      MT
Maldives      434000     4520      MV
Brunei        434000    12128      BN
Copy

To order by the largest values in column “population” and then “GDP”, we can specify multiple columns like in the next example.

>>> df.nlargest(3, ['population', 'GDP'])
        population      GDP alpha-2
France    65000000  2583560      FR
Italy     59000000  1937894      IT
Brunei      434000    12128      BN
Copy
Language: English