modin.pandas.Index.sort_values¶
- Index.sort_values(return_indexer: bool = False, ascending: bool = True, na_position: NaPosition = 'last', key: Callable | None = None) Index | tuple[Index, np.ndarray][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/index.py#L801-L830)¶
- Return a sorted copy of the index. - Return a sorted copy of the index, and optionally return the indices that sorted the index itself. - Parameters:
- return_indexer (bool, default False) – Should the indices that would sort the index be returned. 
- ascending (bool, default True) – Should the index values be sorted in ascending order. 
- na_position ({'first' or 'last'}, default 'last') – Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. 
- key (callable, optional) – If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin - sorted()function, with the notable difference that this key function should be vectorized. It should expect an- Indexand return an- Indexof the same shape. This parameter is not yet supported.
 
- Returns:
- Index is returned in all cases as a sorted copy of the index. ndarray is returned when return_indexer is True, represents the indices that the index itself was sorted by. 
- Return type:
- Index, numpy.ndarray 
 - See also - Series.sort_values
- Sort values of a Series. 
- DataFrame.sort_values
- Sort values in a DataFrame. 
 - Note - The order of the indexer pandas returns is based on numpy’s argsort which defaults to quicksort. However, currently Snowpark pandas does not support quicksort; instead, stable sort is performed. Therefore, the order of the indexer returned by Index.sort_values is not guaranteed to match pandas’ result indexer. - Examples - >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Index([10, 100, 1, 1000], dtype='int64') - Sort values in ascending order (default behavior). - >>> idx.sort_values() Index([1, 10, 100, 1000], dtype='int64') - Sort values in descending order, and also get the indices idx was sorted by. - >>> idx.sort_values(ascending=False, return_indexer=True) (Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2]))