modin.pandas.DataFrame.sort_values¶
- DataFrame.sort_values(by, axis=0, ascending=True, inplace: bool = False, kind='quicksort', na_position='last', ignore_index: bool = False, key: IndexKeyFunc | None = None)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.30.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/base_overrides.py#L1635-L1709)¶
- Sort by the values along either axis. - Parameters:
- by (str or list of str) – Name or list of names to sort by. - if axis is 0 or ‘index’ then by may contain index levels and/or column labels. - if axis is 1 or ‘columns’ then by may contain column levels and/or index labels. 
- axis ({0 or ‘index’, 1 or ‘columns’}, default 0) – Axis to be sorted. 
- ascending (bool or list of bool, default True) – Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. 
- inplace (bool, default False) – If True, perform operation in-place. 
- kind ({'quicksort', 'mergesort', 'heapsort', 'stable'} default 'None') – Choice of sorting algorithm. By default, Snowpark Pandaas performs unstable sort. Please use ‘stable’ to perform stable sort. Other choices ‘quicksort’, ‘mergesort’ and ‘heapsort’ are ignored. 
- na_position ({'first', 'last'}, default 'last') – Puts NaNs at the beginning if first; last puts NaNs at the end. 
- ignore_index (bool, default False) – If True, the resulting axis will be labeled 0, 1, …, n - 1. 
- key (callable, optional) – Apply the key function to the values before sorting. This is similar to the key argument in the builtin - sorted()function, with the notable difference that this key function should be vectorized. It should expect a- Seriesand return a Series with the same shape as the input. It will be applied to each column in by independently.
 
- Returns:
- DataFrame with sorted values or None if - inplace=True.
- Return type:
- DataFrame or None 
 - Notes - Snowpark pandas API doesn’t currently support distributed computation of sort_values when ‘key’ argument is provided or frame is sorted on ‘columns’ axis. - See also - DataFrame.sort_index
- Sort a DataFrame by the index. 
- Series.sort_values
- Similar method for a Series. 
 - Examples - >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... 'col4': ['a', 'B', 'c', 'D', 'e', 'F'] ... }) >>> df col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 None 8 4 D 4 D 7 2 e 5 C 4 3 F - Sort by col1 - >>> df.sort_values(by=['col1']) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 None 8 4 D - Sort by multiple columns - >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 col4 1 A 1 1 B 0 A 2 0 a 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 None 8 4 D - Sort Descending - >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 col4 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B 3 None 8 4 D - Putting NAs first - >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 col4 3 None 8 4 D 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B