modin.pandas.pivot_table¶
- modin.pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/general_overrides.py#L137-L168)¶
Create a spreadsheet-style pivot table as a
DataFrame
.The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.
- Parameters:
values (list-like or scalar, optional) – Column or columns to aggregate.
index (column, Grouper, array, or list of the previous) – Keys to group by on the pivot table index. If a list is passed, it can contain any of the other types (except list). If an array is passed, it must be the same length as the data and will be used in the same manner as column values.
columns (column, Grouper, array, or list of the previous) – Keys to group by on the pivot table column. If a list is passed, it can contain any of the other types (except list). If an array is passed, it must be the same length as the data and will be used in the same manner as column values.
aggfunc (function, list of functions, dict in string, default "mean".) – If a list of functions is passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If a dict is passed, the key is column to aggregate and the value is function or list of functions. If
margin=True
, aggfunc will be used to calculate the partial aggregates.fill_value (scalar, default None) – Value to replace missing values with (in the resulting pivot table, after aggregation).
margins (bool, default False) – If
margins=True
, specialAll
columns and rows will be added with partial group aggregates across the categories on the rows and columns.dropna (bool, default True) – Do not include columns whose entries are all NaN. If True, rows with a NaN value in any column will be omitted before computing margins.
margins_name (str, default 'All') – Name of the row / column that will contain the totals when margins is True.
observed (bool, default False) – This only applies if any of the groupers are Categoricals. Categoricals are not yet implemented in Snowpark pandas. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.
sort (bool, default True) – Specifies if the result should be sorted.
- Returns:
An Excel style pivot table.
- Return type:
Snowpark pandas
DataFrame
Notes
Raise NotImplementedError if
observed or sort is given;
or index, columns, or values is not str, a list of str, or None;
or DataFrame contains MultiIndex;
or any aggfunc is not “count”, “mean”, “min”, “max”, or “sum”
index is None, and aggfunc is a dictionary containing lists.
- Computing margins with no index has limited support:
when aggfunc is “count” or “mean” the result has discrepancies with pandas - Snowpark pandas computes the aggfunc over the data grouped by the first pivot column, while pandas computes the aggfunc over the result of the aggfunc from the initial pivot.
aggfunc as a dictionary is not supported.
See also
DataFrame.pivot
Pivot without aggregation that can handle non-numeric data.
DataFrame.melt
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
wide_to_long
Wide panel to long format. Less flexible but more user-friendly than melt.
Examples
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9
This first example aggregates values by taking the sum.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc="sum") >>> table C large small A B bar one 4.0 5 two 7.0 6 foo one 4.0 1 two NaN 6
We can also fill missing values using the fill_value parameter.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc="sum", fill_value=0) >>> table C large small A B bar one 4.0 5 two 7.0 6 foo one 4.0 1 two NaN 6
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': "mean", 'E': "mean"}) >>> table D E D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': "mean", ... 'E': ["min", "max", "mean"]}) >>> table D E mean max mean min D E E E A C bar large 5.500000 9 7.500000 6 small 5.500000 9 8.500000 8 foo large 2.000000 5 4.500000 4 small 2.333333 6 4.333333 2