modin.pandas.Series.dt.tz_convert¶
- Series.dt.tz_convert[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/.tox/docs/lib/python3.9/site-packages/modin/pandas/series_utils.py#L736-L739)¶
Convert tz-aware Datetime Array/Index from one time zone to another.
- Parameters:
tz (str, pytz.timezone, dateutil.tz.tzfile, datetime.tzinfo or None) – Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A tz of None will convert to UTC and remove the timezone information.
- Return type:
Array or Index
- Raises:
TypeError – If Datetime Array/Index is tz-naive.
See also –
DatetimeIndex.tz – A timezone that has a variable offset from UTC.
DatetimeIndex.tz_localize – Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex.
Examples
With the tz parameter, we can change the DatetimeIndex to other time zones:
>>> dti = pd.date_range(start='2014-08-01 09:00', ... freq='h', periods=3, tz='Europe/Berlin')
>>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='h')
>>> dti.tz_convert('US/Central') DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='h')
With the tz=None, we can remove the timezone (after converting to UTC if necessary):
>>> dti = pd.date_range(start='2014-08-01 09:00', freq='h', ... periods=3, tz='Europe/Berlin')
>>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='h')
>>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='h')