modin.pandas.Series.dropna¶
- Series.dropna(*, axis: Axis = 0, inplace: bool = False, how: str | NoDefault = _NoDefault.no_default)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/series_overrides.py#L1123-L1135)¶
Return a new Series with missing values removed.
- Parameters:
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DataFrame.
inplace (bool, default False) – If True, do operation inplace and return None.
how (str, optional) – Not in use. Kept for compatibility.
- Returns:
Series with NA entries dropped from it or None if
inplace=True
.- Return type:
Snowpark pandas
Series
or None
See also
Series.isna
Indicate missing values.
Series.notna
Indicate existing (non-missing) values.
Series.fillna
Replace missing values.
DataFrame.dropna
Drop rows or columns which contain NA values.
Index.dropna
Drop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Keep the Series with valid entries in the same variable.
>>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values.
None
is considered an NA value.>>> ser = pd.Series([np.nan, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 None 1 2 2 None 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object