modin.pandas.DataFrame.unstack¶
- DataFrame.unstack(level: int | str | list = - 1, fill_value: int | str | dict = None, sort: bool = True)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L2084-L2112)¶
Pivot a level of the (necessarily hierarchical) index labels.
Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.
If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex).
- Parameters:
level (int, str, list, default -1) – Level(s) of index to unstack, can pass level name.
fillna (int, str, dict, optional) – Replace NaN with this value if the unstack produces missing values.
sort (bool, default True) – Sort the level(s) in the resulting MultiIndex columns.
- Return type:
Notes
Supports only integer
level
andsort = True
. Internally, callspivot_table
ormelt
to perform unstack operation.See also
DataFrame.pivot
Pivot without aggregation that can handle non-numeric data.
DataFrame.stack
Pivot a level of the column labels (inverse operation from unstack).
Examples
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64