modin.pandas.DataFrame.skew¶
- DataFrame.skew(axis: Axis | None | NoDefault = _NoDefault.no_default, skipna: bool = True, numeric_only=True, **kwargs)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/base_overrides.py#L1313-L1325)¶
Return unbiased skew, normalized over n-1
- Parameters:
axis (Optional[int]) – Axis to calculate skew on, only 0 (columnar) is supported
skipna (Optional[bool]) – Exclude NA values when calculating result ( only True is supported )
numeric_only (Optional[bool]) – Include only the numeric columns ( only True is supported )
level (Optional[bool]) – Not Supported, included for compatibility with other stats calls
- Return type:
A series ( or scalar if used on a series ) with the calculated skew
Examples
>>> df = pd.DataFrame({'A': [0, 1, 2], ... 'B': [1, 2, 1], ... 'C': [3, 4, 5]}) >>> df.skew() A 0.000000 B 1.732059 C 0.000000 dtype: float64