modin.pandas.DataFrame.set_axis¶
- DataFrame.set_axis(labels: IndexLabel, *, axis: Axis = 0, copy: bool | NoDefault = _NoDefault.no_default)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/dataframe_overrides.py#L1858-L1874)¶
Assign desired index to given axis.
- Parameters:
labels (list-like, Index, MultiIndex) – The values for the new index.
axis ({index (0), rows(0), columns (1)}) – Axis for the function to be applied on.
copy (bool, default True) – To maintain compatibility with pandas, does nothing.
- Return type:
Examples
>>> df = pd.DataFrame({ ... "Videogame": ["Dark Souls", "Cruelty Squad", "Stardew Valley"], ... "Genre": ["Souls-like", "Immersive-sim", "Farming-sim"], ... "Rating": [9.5, 9.0, 8.7]}) >>> df.set_axis(['a', 'b', 'c'], axis="index") Videogame Genre Rating a Dark Souls Souls-like 9.5 b Cruelty Squad Immersive-sim 9.0 c Stardew Valley Farming-sim 8.7
>>> df.set_axis(["Name", "Sub-genre", "Rating out of 10"], axis=1) Name Sub-genre Rating out of 10 0 Dark Souls Souls-like 9.5 1 Cruelty Squad Immersive-sim 9.0 2 Stardew Valley Farming-sim 8.7
>>> columns = pd.MultiIndex.from_tuples([("Gas", "Toyota"), ("Gas", "Ford"), ("Electric", "Tesla"), ("Electric", "Nio"),]) >>> data = [[100, 300, 900, 400], [200, 500, 300, 600]] >>> df = pd.DataFrame(columns=columns, data=data) >>> df.set_axis([2010, 2015], axis="rows") Gas Electric Toyota Ford Tesla Nio 2010 100 300 900 400 2015 200 500 300 600