snowflake.snowpark.Table.merge¶
- Table.merge(source: DataFrame, join_expr: Column, clauses: Iterable[Union[WhenMatchedClause, WhenNotMatchedClause]], *, statement_params: Optional[Dict[str, str]] = None, block: bool = True) MergeResult [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.16.0/src/snowflake/snowpark/table.py#L595-L685)¶
- Table.merge(source: DataFrame, join_expr: Column, clauses: Iterable[Union[WhenMatchedClause, WhenNotMatchedClause]], *, statement_params: Optional[Dict[str, str]] = None, block: bool = False) AsyncJob
Merges this
Table
withDataFrame
source on the specified join expression and a list of matched or not-matched clauses, and returns aMergeResult
, representing the number of rows inserted, updated and deleted by this merge action. See MERGE for details.- Parameters:
source – A
DataFrame
to join with thisTable
. It can also be anotherTable
.join_expr – A
Column
object representing the expression on which to join thisTable
andsource
.clauses – A list of matched or not-matched clauses specifying the actions to perform when the values from this
Table
andsource
match or not match onjoin_expr
. These actions can only be instances ofWhenMatchedClause
andWhenNotMatchedClause
, and will be performed sequentially in this list.statement_params – Dictionary of statement level parameters to be set while executing this action.
block – A bool value indicating whether this function will wait until the result is available. When it is
False
, this function executes the underlying queries of the dataframe asynchronously and returns anAsyncJob
.
Example:
>>> from snowflake.snowpark.functions import when_matched, when_not_matched >>> from snowflake.snowpark.types import IntegerType, StringType, StructField, StructType >>> schema = StructType([StructField("key", IntegerType()), StructField("value", StringType())]) >>> target_df = session.create_dataframe([(10, "old"), (10, "too_old"), (11, "old")], schema=schema) >>> target_df.write.save_as_table("my_table", mode="overwrite", table_type="temporary") >>> target = session.table("my_table") >>> source = session.create_dataframe([(10, "new"), (12, "new"), (13, "old")], schema=schema) >>> target.merge(source, (target["key"] == source["key"]) & (target["value"] == "too_old"), ... [when_matched().update({"value": source["value"]}), when_not_matched().insert({"key": source["key"]})]) MergeResult(rows_inserted=2, rows_updated=1, rows_deleted=0) >>> target.sort("key", "value").collect() [Row(KEY=10, VALUE='new'), Row(KEY=10, VALUE='old'), Row(KEY=11, VALUE='old'), Row(KEY=12, VALUE=None), Row(KEY=13, VALUE=None)]