snowflake.snowpark.RelationalGroupedDataFrame¶
- class snowflake.snowpark.RelationalGroupedDataFrame(df: DataFrame, grouping_exprs: List[Expression], group_type: _GroupType)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.16.0/src/snowflake/snowpark/relational_grouped_dataframe.py#L120-L528)¶
- Bases: - object- Represents an underlying DataFrame with rows that are grouped by common values. Can be used to define aggregations on these grouped DataFrames. - See also - Methods - agg(*exprs)- Returns a - DataFramewith computed aggregates.- applyInPandas(func, output_schema, **kwargs)- Maps each grouped dataframe in to a pandas.DataFrame, applies the given function on data of each grouped dataframe, and returns a pandas.DataFrame. - apply_in_pandas(func, output_schema, **kwargs)- Maps each grouped dataframe in to a pandas.DataFrame, applies the given function on data of each grouped dataframe, and returns a pandas.DataFrame. - avg(*cols)- Return the average for the specified numeric columns. - builtin(agg_name)- Computes the builtin aggregate - agg_nameover the specified columns.- count()- Return the number of rows for each group. - function(agg_name)- Computes the builtin aggregate - agg_nameover the specified columns.- max(*cols)- Return the max for the specified numeric columns. - mean(*cols)- Return the average for the specified numeric columns. - median(*cols)- Return the median for the specified numeric columns. - min(*cols)- Return the min for the specified numeric columns. - pivot(pivot_col[, values, default_on_null])- Rotates this DataFrame by turning unique values from one column in the input expression into multiple columns and aggregating results where required on any remaining column values. - sum(*cols)- Return the sum for the specified numeric columns.