modin.pandas.Series.div¶
- Series.div(other, level=None, fill_value=None, axis=0)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/series_overrides.py#L712-L720)¶
Return Floating division of series and other, element-wise (binary operator truediv).
Equivalent to
series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (Series or scalar value) –
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DataFrame.
- Returns:
The result of the operation.
- Return type:
See also
Series.rtruediv
Reverse of the Floating division operator, see Python documentation (https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types) for more details.
Caution
Snowpark pandas API will always produce a division by zero error if the right hand side contains one or more zeroes. This is different from pandas which only produces a ZeroDivisionError exception when
dtype='object'
.Caution
In Snowpark pandas API, whenever a binary operation involves a NULL value, the result will preserve NULL values, e.g. NULL.truediv(<other>) will yield NULL.
Caution
Snowpark pandas API denotes invalid numeric results with None while pandas uses NaN.
Caution
Snowpark pandas API does not support fill_value and level except for default values.
Examples
>>> a = pd.Series([1, -2, 0, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b -2.0 c 0.0 d NaN dtype: float64 >>> b = pd.Series([-2, 1, 3, np.nan, 1], index=['a', 'b', 'c', 'd', 'f']) >>> b a -2.0 b 1.0 c 3.0 d NaN f 1.0 dtype: float64 >>> a.truediv(b) a -0.5 b -2.0 c 0.0 d NaN f NaN dtype: float64