modin.pandas.DataFrame.reset_index¶
- DataFrame.reset_index(level: IndexLabel = None, *, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Hashable = '', allow_duplicates=_NoDefault.no_default, names: Hashable | Sequence[Hashable] = None) DataFrame | Series | None [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/.tox/docs/lib/python3.9/site-packages/modin/pandas/base.py#L2631-L2664)¶
Reset the index, or a level of it.
Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels.
- Parameters:
level (int, str, tuple, or list, default None) – Only remove the given levels from the index. Removes all levels by default.
drop (bool, default False) – Do not try to insert index into dataframe columns. This resets the index to the default integer index.
inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.
col_level (int or str, default 0) – If the columns have multiple levels, determines which level the labels are inserted into. By default, it is inserted into the first level.
col_fill (object, default '') – If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.
allow_duplicates (bool, optional, default lib.no_default) – Allow duplicate column labels to be created.
names (int, str or 1-dimensional list, default None) – Using the given string, rename the DataFrame column which contains the index data. If the DataFrame has a MultiIndex, this has to be a list or tuple with length equal to the number of levels.
- Returns:
DataFrame with the new index or None if
inplace=True
.- Return type:
DataFrame or None
See also
Series.reset_index
Analogous function for Series.
DataFrame.set_index
Opposite of reset_index.
DataFrame.reindex
Change to new indices or expand indices.
DataFrame.reindex_like
Change to same indices as other DataFrame.
Examples
>>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN
When we reset the index, the old index is added as a column, and a new sequential index is used:
>>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN
We can use the drop parameter to avoid the old index being added as a column:
>>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN
You can also use reset_index with MultiIndex.
>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump
Using the names parameter, choose a name for the index column:
>>> df.reset_index(names=['classes', 'names']) classes names speed species max type 0 bird falcon 389.0 fly 1 bird parrot 24.0 fly 2 mammal lion 80.5 run 3 mammal monkey NaN jump
If the index has multiple levels, we can reset a subset of them:
>>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
If we are not dropping the index, by default, it is placed in the top level. We can place it in another level:
>>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
When the index is inserted under another level, we can specify under which one with the parameter col_fill:
>>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
If we specify a nonexistent level for col_fill, it is created:
>>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump