modin.pandas.DataFrame.cummin¶
- DataFrame.cummin(axis=None, skipna=True, *args, **kwargs) Self [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/.tox/docs/lib/python3.9/site-packages/modin/pandas/base.py#L1301-L1316)¶
Return cumulative minimum over a BasePandasDataset axis.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) – The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
*args – Additional keywords have no effect but might be accepted for compatibility with NumPy.
**kwargs – Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
Return cumulative minimum of Series or DataFrame.
- Return type:
Examples
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64
To include NA values in the operation, use skipna=False:
>>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], [3.0, np.nan], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis=’index’.
>>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0