snowflake.snowpark.modin.plugin.extensions.groupby_overrides.DataFrameGroupBy.cummin¶
- DataFrameGroupBy.cummin(axis: Union[int, Literal['index', 'columns', 'rows']] = 0, numeric_only: bool = False, *args, **kwargs)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/groupby_overrides.py#L504-L512)¶
Cumulative min for each group.
See also
Series.groupby
Apply a function groupby to a Series.
DataFrame.groupby
Apply a function groupby to each row or column of a DataFrame.
Examples
For SeriesGroupBy:
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] >>> ser = pd.Series([1, 6, 2, 3, 0, 4], index=lst) >>> ser a 1 a 6 a 2 b 3 b 0 b 4 dtype: int64 >>> ser.groupby(level=0).cummin() a 1 a 1 a 1 b 3 b 0 b 0 dtype: int64
For DataFrameGroupBy:
>>> data = [[1, 0, 2], [1, 1, 5], [6, 6, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["snake", "rabbit", "turtle"]) >>> df a b c snake 1 0 2 rabbit 1 1 5 turtle 6 6 9 >>> df.groupby("a").groups {1: ['snake', 'rabbit'], 6: ['turtle']} >>> df.groupby("a").cummin() b c snake 0 2 rabbit 0 2 turtle 6 9