modin.pandas.DatetimeIndex.indexer_between_time¶
- DatetimeIndex.indexer_between_time(start_time, end_time, include_start: bool = True, include_end: bool = True) ndarray[int64] [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/datetime_index.py#L817-L851)¶
Return index locations of values between particular times of day.
- Parameters:
start_time (datetime.time, str) – Time passed either as object (datetime.time) or as string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”,”%I%M%S%p”).
end_time (datetime.time, str) – Time passed either as object (datetime.time) or as string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”,”%I%M%S%p”).
include_start (bool, default True) –
include_end (bool, default True) –
- Return type:
np.ndarray[np.intp]
See also
indexer_at_time
Get index locations of values at particular time of day.
DataFrame.between_time
Select values between particular times of day.
Examples
>>> idx = pd.date_range("2023-01-01", periods=4, freq="h") >>> idx DatetimeIndex(['2023-01-01 00:00:00', '2023-01-01 01:00:00', '2023-01-01 02:00:00', '2023-01-01 03:00:00'], dtype='datetime64[ns]', freq=None) >>> idx.indexer_between_time("00:00", "2:00", include_end=False) array([0, 1])