snowflake.snowpark.modin.plugin.extensions.window_overrides.Rolling.corr¶
- Rolling.corr(other: Optional[DataFrame] = None, pairwise: Optional[bool] = None, ddof: int = 1, numeric_only: bool = False, **kwargs: Any)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.42.0/src/snowflake/snowpark/modin/plugin/extensions/window_overrides.py#L334-L350)¶
- Calculate the rolling correlation. - Parameters:
- other (Series or - DataFrame, optional) – If not supplied then will default to self and produce pairwise output.
- pairwise (bool, default None) – If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed - DataFramein the case of- DataFrameinputs. In the case of missing elements, only complete pairwise observations will be used.
- ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is - N - ddof, where- Nrepresents the number of elements.
- numeric_only (bool, default False) – Include only float, int, boolean columns. 
 
- Returns:
- Return type is the same as the original object with np.float64 dtype. 
- Return type:
 - Examples - >>> df1 = pd.DataFrame({"col1": [1, 4, 3]}) >>> df2 = pd.DataFrame({"col1": [1, 6, 3]}) >>> df1.rolling(window=3, min_periods=3).corr(other=df2,pairwise=None, numeric_only=True) col1 0 NaN 1 NaN 2 0.953821