modin.pandas.Index¶
- class modin.pandas.Index(data: ArrayLike | native_pd.Index | Series | None = None, dtype: str | np.dtype | ExtensionDtype | None = None, copy: bool = False, name: object = None, tupleize_cols: bool = True, query_compiler: SnowflakeQueryCompiler = None)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.42.0/src/snowflake/snowpark/modin/plugin/extensions/index.py#L111-L1036)¶
- Bases: - object- Methods - all(*args, **kwargs)- Return whether all elements are Truthy. - any(*args, **kwargs)- Return whether any element is Truthy. - append()- Append a collection of Index options together. - argmax([axis, skipna])- Return int position of the largest value in the Series. - argmin([axis, skipna])- Return int position of the smallest value in the Series. - astype(dtype[, copy])- Create an Index with values cast to dtypes. - copy([name, deep])- Make a copy of this object. - delete()- Make new Index with passed location(-s) deleted. - difference(other[, sort])- Return a new Index with elements of index not in other. - drop(labels[, errors])- Make new Index with the passed list of labels deleted. - drop_duplicates([keep])- Return Index with duplicate values removed. - dropna()- Return Index without NA/NaN values. - duplicated([keep])- Indicate duplicate index values. - equals(other)- Determine if two Index objects are equal. - fillna()- Fill NA/NaN values with the specified value. - get_indexer_for(target)- Guaranteed return of an indexer even when non-unique. - get_level_values(level)- Return an Index of values for requested level. - hasnans()- Return True if there are any NaNs. - identical(other)- Similar to equals, but checks that object attributes and types are also equal. - insert()- Make new Index inserting new item at location. - intersection(other[, sort])- Form the intersection of two Index objects. - Check if the Index only consists of booleans. - Check if the Index is a floating type. - Check if the Index only consists of integers. - is_interval()- Check if the Index holds Interval objects. - Check if the Index only consists of numeric data. - Check if the Index is of the object dtype. - isin()- Return a boolean array where the index values are in values. - isna()- Detect missing values. - item()- Return the first element of the underlying data as a Python scalar. - join()- Compute join_index and indexers to conform data structures to the new index. - max([axis, skipna])- Return the maximum value of the Index. - min([axis, skipna])- Return the minimum value of the Index. - notna()- Detect existing (non-missing) values. - nunique([dropna])- Return number of unique elements in the object. - reindex(target[, method, level, limit, ...])- Create index with target's values. - rename(name[, inplace])- Alter Index or MultiIndex name. - set_names(names[, level, inplace])- Set Index name. - slice_indexer([start, end, step])- Compute the slice indexer for input labels and step. - sort_values([return_indexer, ascending, ...])- Return a sorted copy of the index. - to_frame([index, name])- Create a - DataFramewith a column containing the Index.- to_list()- Return a list of the values. - to_numpy([dtype, copy, na_value])- A NumPy ndarray representing the values in this Series or Index. - to_pandas(*[, statement_params])- Convert Snowpark pandas Index to pandas Index. - to_series([index, name])- Create a Series with both index and values equal to the index keys. - tolist()- Return a list of the values. - union(other[, sort])- Form the union of two Index objects. - unique([level])- Return unique values in the index. - value_counts([normalize, sort, ascending, ...])- Return a Series containing counts of unique values. - Attributes - Return the transpose, which is by definition self. - return the array of values - Get the dtype object of the underlying data. - Whether the index is empty. - Check if the Index has duplicate values. - Return a boolean if the values are equal or decreasing. - Return a boolean if the values are equal or increasing. - Return if the index has unique values. - Get the index name. - Get names of index - Number of dimensions of the underlying data, by definition 1. - Number of levels. - Get a tuple of the shape of the underlying data. - Get the number of elements in the underlying data. - Vectorized string functions for Series and Index. - Return an array representing the data in the Index.