modin.pandas.DataFrame.reset_index¶
- DataFrame.reset_index(level: IndexLabel = None, *, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Hashable = '', allow_duplicates=_NoDefault.no_default, names: Hashable | Sequence[Hashable] = None) DataFrame | Series | None[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.42.0/.tox/docs/lib/python3.9/site-packages/modin/pandas/base.py#L2677-L2713)¶
- Reset the index, or a level of it. - Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. - Parameters:
- level (int, str, tuple, or list, default None) – Only remove the given levels from the index. Removes all levels by default. 
- drop (bool, default False) – Do not try to insert index into dataframe columns. This resets the index to the default integer index. 
- inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one. 
- col_level (int or str, default 0) – If the columns have multiple levels, determines which level the labels are inserted into. By default, it is inserted into the first level. 
- col_fill (object, default '') – If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. 
- allow_duplicates (bool, optional, default lib.no_default) – Allow duplicate column labels to be created. 
- names (int, str or 1-dimensional list, default None) – Using the given string, rename the DataFrame column which contains the index data. If the DataFrame has a MultiIndex, this has to be a list or tuple with length equal to the number of levels. 
 
- Returns:
- DataFrame with the new index or None if - inplace=True.
- Return type:
- DataFrame or None 
 - See also - Series.reset_index
- Analogous function for Series. 
- DataFrame.set_index
- Opposite of reset_index. 
- DataFrame.reindex
- Change to new indices or expand indices. 
- DataFrame.reindex_like
- Change to same indices as other DataFrame. 
 - Examples - >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN - When we reset the index, the old index is added as a column, and a new sequential index is used: - >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN - We can use the drop parameter to avoid the old index being added as a column: - >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN - You can also use reset_index with MultiIndex. - >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump - Using the names parameter, choose a name for the index column: - >>> df.reset_index(names=['classes', 'names']) classes names speed species max type 0 bird falcon 389.0 fly 1 bird parrot 24.0 fly 2 mammal lion 80.5 run 3 mammal monkey NaN jump - If the index has multiple levels, we can reset a subset of them: - >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump - If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: - >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump - When the index is inserted under another level, we can specify under which one with the parameter col_fill: - >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump - If we specify a nonexistent level for col_fill, it is created: - >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump