modin.pandas.DataFrame.quantile¶
- DataFrame.quantile(q=0.5, axis=0, numeric_only=False, interpolation='linear', method='single') Union[DataFrame, Series][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.42.0/.tox/docs/lib/python3.9/site-packages/modin/pandas/dataframe.py#L1696-L1710)¶
- Return values at the given quantile over requested axis. - Parameters:
- q (float or array-like of float, default 0.5) – Value between 0 <= q <= 1, the quantile(s) to compute. 
- axis ({0 or 'index', 1 or 'columns'}, default 0) – Axis across which to compute quantiles. 
- numeric_only (bool, default False) – Include only data where is_numeric_dtype is true. When True, bool columns are included, but attempting to compute quantiles across bool values is an ill-defined error in both pandas and Snowpark pandas. 
- interpolation ({"linear", "lower", "higher", "midpoint", "nearest"}, default "linear") – - Specifies the interpolation method to use if a quantile lies between two data points i and j: - linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. 
- lower: i. 
- higher: j. 
- nearest: i or j, whichever is nearest. 
- midpoint: (i + j) / 2. 
 - Snowpark pandas currently only supports “linear” and “nearest”. 
- method ({"single", "table"}, default "single") – Whether to compute quantiles per-column (“single”) or over all columns (“table”). When “table”, the only allowed interpolation methods are “nearest”, “lower”, and “higher”. 
 
- Returns:
- If - qis an array, a DataFrame will be returned where the index is- q, the columns are the columns of- self, and the values are the quantiles. If- qis a float, a Series will be returned where the index is the columns of- selfand the values are the quantiles.
- Return type:
 - Examples - >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) - With a scalar q: - >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 - With a list q: - >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 - Values considered NaN do not affect the result: - >>> df = pd.DataFrame({"a": [None, 0, 25, 50, 75, 100, np.nan]}) >>> df.quantile([0, 0.25, 0.5, 0.75, 1]) a 0.00 0.0 0.25 25.0 0.50 50.0 0.75 75.0 1.00 100.0 - Notes - Currently only supports calls with axis=0. - Also, unsupported if q is a Snowpandas DataFrame or Series.